Time-Varying UWB Channel Measurement and Data Transfer Analysis for Multiuser MB-OFDM-based Infostation Network

Solomon Nunoo, Uche A. K. Chude-Okonkwo, Razali Ngah

Abstract


This paper presents the path loss and time dispersion parameters results obtained from a set of channel measurements conducted in various outdoor environments that are typical of multiuser Infostation application scenarios. The measurement procedure takes into account the practical scenarios typical of the positions and movements of the users in the particular Infostation network. A data transfer analysis for multiband orthogonal frequency division multiplexing (MB-OFDM) is also presented. As expected, the rough estimate of simultaneous data transfer in a multiuser Infostation scenario indicates dependency of the download percentage on the data size, number and speed of the users, and the elapse time.


Keywords


Ultra-wideband (UWB); Infostation; path loss; time dispersion analysis; data transfer analysis; multiuser MB-OFDM

Full Text:

PDF

References


Anderson, C. R., Volos, H. I., & Buehrer, R. M. (2013). Characterization of Low-Antenna Ultrawideband Propagation in a Forest Environment. IEEE Transactions on Vehicular Technology, 62(7), 2878–2895. http://doi.org/10.1109/TVT.2013.2251027

Batra, A., Balakrishnan, J., Aiello, G. R., Foerster, J. R., & Dabak, A. (2004). Design of a Multiband OFDM System for Realistic UWB Channel Environments. IEEE Transactions on Microwave Theory and Techniques, 52(9), 2123–2138. http://doi.org/10.1109/TMTT.2004.834184

Cavalcanti, D., Sadok, D., & Kelner, J. (2002). Mobile infostations: a paradigm for wireless data communications. In IASTED International Conference on Wireless and Optical Communications (WOC 2002) (pp. 441–446). Banff, Alberta, Canada: IASTED. http://doi.org/10.1.1.120.7024

Chehri, A., Fortier, P., & Tardif, P. M. (2008). Large-Scale Fading and Time Dispersion Parameters of UWB Channel in Underground Mines. International Journal of Antennas and Propagation, 2008, 1–10. http://doi.org/10.1155/2008/806326

Chude-Okonkwo, U. A. K., Ngah, R., Leow, C. Y., & Rahaman, T. A. (2012). Time-Scale Domain Characterization of Time-Varying Ultrawideband Infostation Channel. Radioengineering, 21(2), 694–703.

Cramer, R. J.-M., Scholtz, R. A., & Win, M. Z. (2002). Evaluation of an ultra-wide-band propagation channel. IEEE Transactions on Antennas and Propagation, 50(5), 561–570. http://doi.org/10.1109/TAP.2002.1011221

de Lacerda Neto, R. L., Hayar, A. M., & Debbah, M. (2007). Channel division multiple access: new multiple access approach for UWB networks. Tc, 1, 2Td.

Di Francesco, A., Di Renzo, M., Feliziani, M., Graziosi, F., Manzi, G., Santucci, F., … Presaghi, R. (2005). Sounding and modelling of the ultra wide-band channel in outdoor scenarios. In 2nd International Workshop Networking with Ultra Wide Band and Workshop on Ultra Wide Band for Sensor Networks, 2005. Networking with UWB 2005. (pp. 20–24). IEEE. http://doi.org/10.1109/NETUWB.2005.1469995

Domazetovic, A., Greenstein, L. J., Mandayam, N. B., & Seskar, I. (2002). A new modeling approach for wireless channels with predictable path geometries. In Proceedings IEEE 56th Vehicular Technology Conference (pp. 454–458). IEEE. http://doi.org/10.1109/VETECF.2002.1040384

Donlan, B. M., McKinstry, D. R., & Buehre, R. M. (2006). The UWB indoor channel: large and small scale modeling. IEEE Transactions on Wireless Communications, 5(10), 2863–2873. http://doi.org/10.1109/TWC.2006.04482

El Din, S. A., El-Hadidy, M., Kupferschmidt, C., & Kaiser, T. (2010). Frequency dependence of the UWB indoor channel and the effects of the antenna directivity on path loss and multipath propagation. In IEEE Middle East Conference on Antennas and Propagation (MECAP 2010) (pp. 1–4). Cairo, Egypt: IEEE. http://doi.org/10.1109/MECAP.2010.5724170

Foerster, J. R. (2002). The performance of a direct-sequence spread ultrawideband system in the presence of multipath, narrowband interference, and multiuser interference. In 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580) (pp. 87–91). IEEE. http://doi.org/10.1109/UWBST.2002.1006325

Frenkiel, R. H., Badrinath, B. R., Borres, J., Yates, R. D., & Borras, J. (2000). The Infostations challenge: balancing cost and ubiquity in delivering wireless data. IEEE Personal Communications, 7(2), 66–71. http://doi.org/10.1109/98.839333

Galluccio, L., Leonardi, A., Morabito, G., & Palazzo, S. (2008). Timely and energy-efficient communications in rural infostation systems. IEEE Wireless Communications, 15(3), 48–53. http://doi.org/10.1109/MWC.2008.4547522

Iacono, A. L., & Rose, C. (2002). Infostations: New Perspectives on Wireless Data Networks. In S. Tekinay (Ed.), Next Generation Wireless Networks (Vol. 598, pp. 3–63). Boston: Kluwer Academic Publishers. http://doi.org/10.1007/b117132

Irahhauten, Z., Janssen, G., Nikookar, H., Yarovoy, A., & Ligthart, L. (2006). UWB Channel Measurements and Results for Office and Industrial Environments. In 2006 IEEE International Conference on Ultra-Wideband (pp. 225–230). IEEE. http://doi.org/10.1109/ICU.2006.281554

Karedal, J., Wyne, S., Almers, P., Tufvesson, F., & Molisch, A. F. (2007). A Measurement-Based Statistical Model for Industrial Ultra-Wideband Channels. IEEE Transactions on Wireless Communications, 6(8), 3028–3037. http://doi.org/10.1109/TWC.2007.051050

Kim, C. W., Sun, X., Chiam, L. C., Kannan, B., Chin, F. P. S., & Garg, H. K. (2005). Characterization of ultra-wideband channels for outdoor office environment. In IEEE Wireless Communications and Networking Conference, 2005 (Vol. 2, pp. 950–955). IEEE. http://doi.org/10.1109/WCNC.2005.1424636

Lakkundi, V. (2006). Ultra Wideband Communication: History, Evolution and Emergence. Acta Polytechnica, 46(4), 18–20.

Lee, J.-Y. (2010). UWB Channel Modeling in Roadway and Indoor Parking Environments. IEEE Transactions on Vehicular Technology, 59(7), 3171–3180. http://doi.org/10.1109/TVT.2010.2044821

Molisch, A. F. (2009). Ultra-Wide-Band Propagation Channels. Proceedings of the IEEE, 97(2), 353–371. http://doi.org/10.1109/JPROC.2008.2008836

Molisch, A. F. (2011). Wireless Communications (Second). West Sussex, United Kingdom: John Wiley & Sons Ltd.

Molisch, A. F., Cassioli, D., Emami, S., Fort, A., Kannan, B., Karedal, J., … Win, M. Z. (2006). A Comprehensive Standardized Model for Ultrawideband Propagation Channels. IEEE Transactions on Antennas and Propagation, 54(11), 3151–3166. http://doi.org/10.1109/TAP.2006.883983

Munier, F., & Eriksson, T. (2006). Time-Frequency Channel estimation for MB-OFDM UWB Systems. In 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 1–5). IEEE. http://doi.org/10.1109/PIMRC.2006.254456

Muqaibel, A., Safaai-Jazi, A., Attiya, A., Woerner, B., & Riad, S. (2006). Path-loss and time dispersion parameters for indoor UWB propagation. IEEE Transactions on Wireless Communications, 5(2), 550–559. http://doi.org/10.1109/TWC.2006.1603970

Niu, W., Li, J., & Talty, T. (2008). Intra-Vehicle UWB Channel Measurements and Statistical Analysis. In IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference (pp. 1–5). Ieee. http://doi.org/10.1109/GLOCOM.2008.ECP.653

Nkakanou, B., Delisle, G. Y., & Hakem, N. (2011). Experimental Characterization of Ultra-Wideband Channel Parameter Measurements in an Underground Mine. Journal of Computer Networks and Communications, 2011, 1–7. http://doi.org/10.1155/2011/157596

Noori, N., Karimzadeh-Baee, R., & Abolghasemi, A. (2009). An Empirical Ultra Wideband Channel Model for Indoor Laboratory Environments. Radioengineering, 18(1), 68–74.

Rajappan, G., Acharya, J., Liu, H., Mandayam, N., Seskar, I., & Yates, R. (2006). Mobile Infostation Network Technology. In R. M. Rao, S. A. Dianat, & M. D. Zoltowski (Eds.), Proc. of SPIE on Wireless Sensing and Processing (p. 62480M–62480M–9). Orlando, Florida. http://doi.org/10.1117/12.665982

Rappaport, T. S. (2002). Wireless Communication: Principles and Practice (2nd Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Renzo, M. Di, Graziosi, F., Minutolo, R., Montanari, M., & Santucci, F. (2006). The ultra-wide bandwidth outdoor channel: From measurement campaign to statistical modelling. Mobile Networks and Applications, 11(4), 451–467. http://doi.org/10.1007/s11036-006-7193-2

Richardson, P. C., Xiang, W., & Stark, W. (2006). Modeling of ultra-wideband channels within vehicles. IEEE Journal on Selected Areas in Communications, 24(4), 906–912. http://doi.org/10.1109/JSAC.2005.863882

Rissafi, Y., Talbi, L., & Ghaddar, M. (2012). Experimental Characterization of an UWB Propagation Channel in Underground Mines. IEEE Transactions on Antennas and Propagation, 60(1), 240–246. http://doi.org/10.1109/TAP.2011.2167927

Santos, T., Karedal, J., Almers, P., Tufvesson, F., & Molisch, A. F. (2010). Modeling the Ultra-Wideband Outdoor Channel: Measurements and Parameter Extraction Method. IEEE Transactions on Wireless Communications, 9(1), 282–290.

Somayazulu, V. S. (2002). Multiple access performance in UWB systems using time hopping vs. direct sequence spreading. In 2002 IEEE Wireless Communications and Networking Conference Record. WCNC 2002 (Cat. No.02TH8609) (Vol. 2, pp. 522–525). IEEE. http://doi.org/10.1109/WCNC.2002.993322

Souza, C. F., & Bello, J. C. R. D. (2008). UWB Signals Transmission in Outdoor Environments for Emergency Communications. In 2008 11th IEEE International Conference on Computational Science and Engineering - Workshops (pp. 343–348). IEEE. http://doi.org/10.1109/CSEW.2008.48

Win, M. Z., Ramirez-Mireles, F., Scholtz, R. A., & Barnes, M. A. (1997). Ultra-wide bandwidth (UWB) signal propagation for outdoor wireless communications. In 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion (Vol. 1, pp. 251–255). IEEE. http://doi.org/10.1109/VETEC.1997.596358

Win, M. Z., & Scholtz, R. A. (2000). Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Transactions on Communications, 48(4), 679–689. http://doi.org/10.1109/26.843135

Win, M. Z., Scholtz, R. A., & Barnes, M. A. (1997). Ultra-wide bandwidth signal propagation for indoor wireless communications. In Proceedings of ICC’97 - International Conference on Communications (Vol. 1, pp. 56–60). IEEE. http://doi.org/10.1109/ICC.1997.604944

Yu, K., Bengtsson, M., Ottersten, B., McNamara, D., Karlsson, P., & Beach, M. (2004). Modeling of Wide-Band MIMO Radio Channels Based on NLoS Indoor Measurements. IEEE Transactions on Vehicular Technology, 53(3), 655–665. http://doi.org/10.1109/TVT.2004.827164

Yu, X., Gibbon, T. Bb., Zibar, D., & Monoroy, I. T. (2008). UWB-over-multimode-fiber technology for short range communication networks. In 13th Annual Symposium of the IEEE/LEOS (pp. 79–83). Twente.


Refbacks

  • There are currently no refbacks.