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Abstract 
 

Non-Intrusive Load Monitoring (NILM) is a highly effective method for maximizing energy efficiency by analysing recorded 

voltage and current measurements to determine appliance-level electricity consumption. Real-time power consumption 

information provided by NILM enables consumers to make informed decisions to save energy and resources. However, the 

challenge lies in extracting meaningful features for accurate appliance classification, and existing research in this area is 

limited. To address this gap, this study focuses on enhancing the predictive performance of NILM through the combination of 

various electrical features. A dataset derived from Intrusive Load Monitoring (ILM) is utilised, with emphasis placed on 

selecting the most significant electrical characteristics. Two experiments are conducted, with the first employing only the root 

mean square current (IRMS) as a feature and the second incorporating six electrical characteristics. Six machine learning 

classification algorithms are applied to each experiment, and their results are compared in terms of accuracy, precision, recall, 

and F-measure. The findings demonstrate that utilizing the six extracted features, including current, voltage, and day section, 

outperforms the standalone IRMS feature. This comparative analysis highlights the effectiveness of these six feature sets for 

NILM in achieving improved classification accuracy. In conclusion, this study emphasizes the importance of feature extraction 

in NILM and provides evidence of the superior performance obtained by incorporating multiple electrical features. The results 

contribute to understanding efficient appliance classification for NILM, enabling enhanced energy management and 

conservation. Future research may explore additional datasets and advanced techniques to further optimize appliance 

classification in NILM systems. 
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1 Introduction 

The industrial sector is known for its high energy 

consumption, accounting for approximately 40% of 

the total. To provide a more specific perspective, the 

construction industry alone uses about 4% of the 

world's energy output and contributes significantly 

to energy-related greenhouse gas emissions, 

amounting to one-third (Robert and Kummert, 

2012). Moreover, the residential sector, particularly, 

is estimated to be responsible for 27% of global 

energy consumption and 17% of CO2 emissions 

(Nejat et al., 2015). Considering these statistics, it's 

projected that energy demand will double by the 

year 2050 (Larcher and Tarascon, 2015; Xing et al., 

2011; Vickers, 2017). To address both current and 

future energy requirements, it becomes imperative 

to embrace solutions that promote the construction 

of more energy-efficient buildings and enhance 

energy utilization in existing structures. 

 

According to the International Electrotechnical 

Commission (IEC), the most significant component 

in overcoming energy challenges will be the 

intelligent and cost-effective use of electricity as the 

principal energy source (Gungor et al., 2013). Over 

the years, studies have been conducted to ascertain 

how energy can be utilized more efficiently in 

workplaces, buildings, and households. Currently, 

there are two main strategies commonly employed 

to enhance energy efficiency within the construction 

sector: Intrusive Load Monitoring (ILM) and Non-

Intrusive Load Monitoring (NILM). While the ILM 

approach has demonstrated its effectiveness, it is 

associated with high costs and time requirements. 

Conversely, NILM offers a more promising and 

practical solution. This is primarily because NILM 

leverages modern monitoring systems that influence 

user behavior, encouraging more responsible energy 

consumption practices (Gopinath et al., 2020). 

 

Despite advancements that have been made in 

designing more energy-efficient buildings, efficient 

consumption of energy in residential settings 

remains a challenge (Himeur et al., 2022). This can 

largely be attributed to the fact that consumers lack 

a readily available frame of reference to ascertain the 

amount of power consumed by individual 

appliances in their homes which invariably has a 

direct impact on their overall power consumption. 

The most common form of power consumption 

feedback for most residential customers is a monthly 

power bill. Studies have shown that supplying 

customers with real-time power use data, on an 

aggregate basis, can help them adjust their behavior 

and save 10-15% on energy expenses (Rode, 2021). 

Moreover, access to disaggregated power 

consumption data can further enable users to save 

better. 

The evolution of electricity systems towards energy 

conservation and sustainability is driven by three 
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fundamental concepts: a) Decarbonization: This 

concept signifies the shift from a centralized power 

generation model to a distributed one, where 

numerous users simultaneously act as consumers 

and producers. This shift is facilitated by the 

increasing integration of Renewable Energy Sources 

(RES) into the grid. The outcome is a more 

environmentally friendly approach to power 

generation., b) Decentralisation: This term 

characterizes the transition from a centralised power 

generation system to a distributed one, where a 

diverse range of users play dual roles as consumers 

and producers of electricity. and c) Digitalisation of 

the grid: In this phase, the grid is enhanced with 

smart devices and IoT (Internet of Things) 

technology. These technologies enable 

comprehensive monitoring and control of the grid, 

resulting in the generation of vast amounts of data. 

This data can then be harnessed by AI algorithms for 

various purposes, further optimising the electricity 

system. 

 

NILM stands to gain significant advantages from the 

ongoing digitalisation of the grid, offering a solution 

that enhances energy efficiency and serves the 

interests of both consumers and utility providers. 

NILM, encompasses a range of techniques designed 

to evaluate the electrical power consumption of 

individual appliances. This assessment is achieved 

by collecting current and/or voltage measurements 

from a limited number of points within a building's 

power distribution system. Through this approach, 

NILM contributes to a more efficient and informed 

management of energy consumption, benefiting 

both end-users and utility companies. As a result, 

NILM can provide consumers with real-time power 

consumption feedback, allowing them to make 

better decisions that save resources and money. 

Power companies, appliance manufacturers, and 

other parties could utilise the data to improve 

electricity usage efficiency and better understand 

how electricity is used. 

 

The stated advantages of the NILM present it as a 

viable alternative to ILM. ILM is exemplified in Fig. 

1 (Kahl, 2019) measuring units on each relevant 

appliance (Hart, 1992), whereas NILM shown in 

Fig. 2 (Kahl, 2019) aims for a single intelligent 

sensor at the aggregated signal, typically at the 

electric cabinet based on appliance-specific 

properties in the current and voltage data. The 

intelligent sensor is typically equipped with state-of-

the-art artificial intelligence to recognize appliance 

statuses, classes, and consumption in real or near-

real-time. Disaggregating energy from a single-

point meter via Artificial Intelligence (AI) 

algorithms is a low-cost option that may be put into 

the user's residence with minimal external 

interference. 
 

 
Fig. 1 Intrusive Load Monitoring 

 

 
Fig. 2 Non-Intrusive Load Monitoring 

 

NILM, which was initially introduced by Hart 

(1991), involves a technique for disaggregating 

electrical loads. This is achieved by analyzing the 

distinctive power consumption patterns associated 

with individual appliances within the overall 

aggregated data (Hamid, 2017). The mathematical 

definition of this problem is as follows:

1

( ) ( ) ( ),
=

= +
L

j

j

P t p t e t

   (1) 

 

where Pj  denotes the power consumption of the thj
 

individual appliance at the time, t, L denotes the total 

number of appliances, 
( )e t

 denotes noise, and P(t) 

denotes the aggregated consumption measured in 

the main electrical panel at time, t. The term load 

signature is employed to refer to the unique energy 

consumption of each electrical appliance. 

 

Hart (1992) conducted research to show how 

different electrical appliances produce different 

power signatures, such as active power, current, and 

voltage. The research demonstrated how on-off 

events may be used to describe the use of particular 

appliances. The NILM model has since been 

improved by several researchers who have explored 

this concept. 

 

Feature extraction, which uses signal processing 

techniques to extract features from voltage (V) and 

current (I) measurements, is a critical stage in 
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NILM. The ultimate purpose of the feature 

extraction step is to create a signature (using a 

feature or a collection of characteristics) that can 

uniquely identify each device. The distinctiveness of 

the appliance signature compared to that of other 

devices determines the performance of any NILM 

system. As a result, identifying such a signature is 

critical for increasing the load discrimination 

capability of the NILM system. However, 

developing an effective algorithm to recognize and 

measure the power consumed by each device in the 

circuits is one of the key obstacles. 

 

Previous studies have employed either steady-state 

analytic approaches (Hart, 1992; Drenker and 

Kader, 1999; Marchiori, 2010; Dong et al., 2012; He 

et al., 2012) or transient methods (Leeb et al., 1995; 

Cole and Albicki, 1998; Shaw et al., 2008; Wang 

and Zheng, 2011; Chang et al., 2011) to study this 

topic. The active/reactive power is measured and 

then utilised to classify the loads using Steady-state 

analysis methodologies. Transient analysis, on the 

other hand, extracts information from the transient 

following the switching of the loads and uses them 

to identify the operating appliances. 

 

The major disadvantage of transient analysis is that 

it necessitates a high sampling rate and a big 

memory size in order to collect signal sequences. 

These criteria inevitably add to the complexity of the 

metering system, as well as its expenses. Steady-

state analysis, on the other hand, does not necessitate 

a high sampling rate or a big memory size, making 

it a particularly practical approach for low-cost 

monitoring systems. 

 

Despite the fact that NILM has been the focus of 

research for over two decades, there has yet to be a 

systematic selection of the different electrical 

properties proposed for successful load 

discrimination. One of the major challenges in 

NILM is determining the most meaningful set of 

electrical parameters to classify appliances (Patel et 

al., 2007). 

 

A review of other works reveals that most works 

only extract voltage and current to classify the 

appliances. The challenge here is that the voltage 

and current are very few features and thus may not 

give a real scenario of the nature of the appliances 

classified. Additionally, two or more appliances 

may have the same current which can lead to a 

misrepresentation of the actual energy consumption 

by the individual appliances. A selection of more 

features is the more efficient approach to achieving 

very competitive classification results. This study, 

therefore, seeks to overcome the limitation of other 

works by considering six electrical features 

including the day section (the number of hours of the 

day the appliance is utilised or the duration in which 

the appliance is used). Root mean square of current 

used, root mean square of voltage used, maximum 

power, minimum power, power factor and day 

section. The main contributions of this paper are to: 

 

1) recommend a set of electrical features which 

can improve the predictive performance of 

machine learning algorithms in NILM; and 

 

2) model five (5) Machine Learning algorithms 

using the extracted electrical features to 

classify the appliances. 

 

The rest of the paper is laid out as follows: Section 

2 examines the most recent research in the field of 

NILM. The proposed method is examined in Section 

3, which includes details on the data, features, and 

predictive algorithm used. Section 4 has the 

conclusion and recommendations, which is followed 

by a detailed discussion in Section 5. In Section 6, 

conclusions are drawn and future work directions 

are suggested. 

 

1.1 Literature Review 

 

This section summarizes the most significant 

research initiatives and related solutions that have 

been presented to assist with appliance feature 

extraction and classification. 

 

In the past few decades, NILM has gained 

significant attention in the field of energy efficiency 

due to its ability to provide real-time information on 

energy consumption. The NILM process involves 

extracting a set of features from recorded voltage 

and current measurements, followed by applying a 

classification algorithm to determine the electrical 

consumption of appliances. While the classification 

of appliances is a critical step in the NILM process, 

there has not been sufficient research on the 

systematic extraction of the most meaningful feature 

set for appliance classification. 

 

The literature on feature extraction and 

classification of appliances for NILM is vast. One of 

the earliest works in this area was conducted by Hart 

(1992), who laid the foundation for present-day 

active studies into feature extraction techniques and 

disaggregation models related to NILM 

applications. 

 

Yan et al. (2019) proposed a Bayesian-based 

classification approach to detect loads from power 

signals, while Dong et al. (2012) developed an 

event-based method for decoupling loads from 

power signals. Machlev et al. (2019) and Ghosh et 

al. (2020) put forward novel objective functions 

aimed at modeling voltage, current, and power 

signals. They also introduced innovative 

optimization techniques, including non-dominated 

sorting genetic algorithm II, and an artificial bee 
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colony optimization-based approach for the purpose 

of load classification. 

 

Numerous studies have employed various Machine 

Learning (ML) techniques to classify loads based on 

extracted power, voltage, and current features. For 

instance, Ghosh et al. (2019) introduced a load 

identification process grounded in fuzzy rule-based 

methods. This approach involved determining the 

harmonic impedances of residential loads using 

voltage and current signals. In a similar vein, 

Sadeghianpourhamami et al. (2017) identified home 

loads using a recursive feature elimination method. 

They followed this by employing a Random Forest 

(RF) classifier based on the most effective steady-

state and transient features derived from current and 

power signals. Liu et al. (2019) adopted yet another 

strategy, utilising an RF classifier. Their approach 

involved the extraction of 45 time-series features 

from voltage and current signals for load 

classification. 

 

In Hassan et al. (2013), the research team utilized 

six distinct waveshape features obtained from 

Voltage-Current (V-I) patterns of residential loads. 

They applied a range of classification algorithms, 

including feed-forward Artificial Neural Networks 

(ANN), hybrid ANN-DE (Differential Evolution), 

Support Vector Machine (SVM), and adaptive boost 

algorithms to categorize these loads. Meanwhile, 

Chang et al. (2015) adopted a feature extraction 

method based on the Hellinger distance algorithm. 

They then employed a particle swarm optimization-

tuned Artificial Neural Network (ANN) classifier to 

classify loads based on these features. Du et al. 

(2015) pursued a different approach by mapping V-

I trajectories to binary grid cells. Afterward, they 

identified loads using extracted graphical signatures 

and implemented a Support Vector Machine (SVM) 

classifier for the classification task. Gulati et al. 

(2016) introduced a load classification method 

relying on the K-Nearest Neighbor (KNN) 

algorithm. They extracted features from radio 

frequency inference signals using an eight-fit 

Gaussian mixture model and a k-peak finder to aid 

in the classification process. In the study by Gillis et 

al. (2017), a KNN classifier was employed for load 

detection. They extracted features from current 

signals using a novel set of higher-order orthogonal 

wavelets, contributing to their unique approach to 

load classification. 

 

Recent advancements in Deep Learning (DL) 

techniques for large-scale data analysis have spurred 

the development of load identification strategies that 

make use of various DL methods. For instance, 

Quek et al. (2019) employed a 1-D convolutional 

stacked long short-term memory (LSTM) recurrent 

neural network to recognize low-voltage DC loads. 

Liu et al. (2018) took a unique approach by 

classifying loads based on images depicting their 

Voltage-Current (V-I) trajectories. They utilized 

transfer learning from a pre-trained AlexNet 

Convolutional Neural Network (CNN) for this task. 

In another study by Liu et al. (2021), a sequence-to-

point learning approach in CNN, based on transfer 

learning, was applied. In this method, the CNN 

module was initially trained on a single appliance 

and then used to detect additional appliances within 

the same and different domains. De Baets et al. 

(2018) employed a six-layer CNN model to identify 

loads based on their V-I trajectory images. Kong et 

al. (2019) utilized a multi-layered CNN module to 

detect loads by analyzing energy consumption 

patterns. These advancements reflect the increasing 

use of DL techniques in load identification research. 

 

While there has been a significant amount of 

research conducted in the field of NILM, there still 

remains a lack of research on systematic feature 

extraction for appliance classification. The selection 

of appropriate features is crucial to the success of 

NILM, as they directly affect the performance of the 

classification algorithms (Angelis et al., 2022). 

Furthermore, many existing studies focus on using a 

single feature, such as Root Mean Square Current 

(Irms), to classify appliances. However, it is widely 

acknowledged that a combination of multiple 

features can improve the accuracy and reliability of 

the classification results. Therefore, this study aims 

to investigate the effectiveness of a set of six 

electrical characteristics, including current, voltage, 

frequency, active power, reactive power, and 

harmonic distortion, for appliance classification in 

NILM. 

 

To evaluate the effectiveness of the proposed feature 

set, two experiments were conducted using a dataset 

derived from ILM data. In the first experiment, only 

the Irms feature was used for classification, while in 

the second experiment, all six electrical 

characteristics were considered. Six machine-

learning classification algorithms were applied to 

each experiment, and the results were compared. 

The findings of this study demonstrate that the use 

of the six extracted features significantly improves 

the performance of NILM in terms of accuracy, 

precision, recall, and F-measure. The comparative 

analysis performed reveals that these six feature sets 

are the most efficient features to consider for NILM. 

 

In conclusion, this study contributes to the ongoing 

research efforts to enhance the performance of 

NILM. The proposed set of six electrical features 

provides a more effective approach to feature 

extraction for appliance classification, which can 

improve the accuracy and reliability of NILM 

applications. Furthermore, this study highlights the 

importance of considering multiple features for 

appliance classification, rather than relying on a 

single feature such as Irms 
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2 Methodology 
 

The proposed methodology consists of four 

consecutive steps, as illustrated in Fig. 3. This 

section provides a detailed description of the data 

processing, outlining the specific steps involved. 

Additionally, the feature extraction procedure is 

presented in depth, discussing the specific 

techniques utilized. Finally, the selection of the most 

suitable predictive model is justified based on the 

characteristics of the dataset and research objectives. 

 

 
 

Fig. 3 Block Diagram Showing the Steps in 

Classifying Appliances Using NILM 

 

2.1 Data Preparation and Processing 
 

The Indraprastha Institute of Information 

Technology (IAWE) in India provided access to the 

IAWE data collection. This dataset comprises 

aggregated and submetered electricity and gas 

values from 33 residential sensors with a one-second 

resolution. The data collection contains 73 days 

worth of observations from a single residence in 

Delhi, India.  

 

Energy consumption signals for six unique devices 

from house 1 were picked and preprocessed from the 

IAWE dataset for the purpose of appliance 

classification using KNN, Logistic Regression (LR), 

SVM, Decision Tree (DT), Random Forest (RF), 

and Naive Bayes (NB). The selected devices were 

an Air conditioner, Computer, Clothes iron, 

Washing machine, Television, and Fridge. For each 

device, its energy consumption signal was cropped 

into a 30-day window, and any activity that occurred 

within 60 seconds was used to extract the features 

employed in this research. The features extracted 

included RMS Current, RMS Voltage, Maximum 

Power, Minimum Power, Power Factor, and Day 

Section. 

The sample raw and processed energy consumption 

data for the Fridge are shown in Fig. 4 and Fig. 5. 

 

2.2 Simulation Parameters 
Feature extraction is a critical step in the NILM 

process, as it involves selecting the most meaningful 

electrical characteristics from the collected data to 

be used for appliance classification. There are 

several methods that can be used for feature 

extraction, including: 

 

Statistical methods: These methods use statistical 

measures such as mean, standard deviation, 

skewness, and kurtosis to extract features from the 

data. These methods are simple and easy to 

implement, but they may not capture all the relevant 

information from the data. 

 

Time-domain methods: These methods use time-

domain characteristics such as root mean square, 

power factor, and harmonic distortion to extract 

features from the data. These methods are useful for 

capturing the temporal variations in the data but may 

not be as effective for capturing the frequency-

domain characteristics of the data. 

 

Frequency-domain methods: These methods use 

frequency-domain characteristics such as the power 

spectrum and the frequency content of the data to 

extract features. These methods are useful for 

capturing the frequency-domain characteristics of 

the data but may not be as effective for capturing the 

temporal variations in the data. 

 

Machine learning methods: These methods use 

machine learning algorithms such as decision trees, 

neural networks, and support vector machines to 

extract features from the data. These methods are 

more complex than the previous methods but can be 

more effective in extracting relevant features from 

the data. 

 

In this study, we used a combination of time-domain 

and frequency-domain methods for feature 

extraction. We first calculated the current root mean 

square (Irms) and Voltage Root Mean Square (Vrms) 

from the data, which are time-domain features 

commonly used in NILM research. The max power 

(Pmax), min power (Pmin), and power factor (Pf), 

which are frequency-domain features that capture 

the variations in the power consumption of the 

appliances, were also calculated. In the final step, 

the data was divided into six distinct time slots, 

representing various segments of the day. These 

time slots include the day section, early morning, 

morning, noon, evening, night, and late night, 

allowing for a more detailed and time-specific 

analysis of the data. This feature captures the 

consumption pattern of the appliances based on the 

time of the day, which can be useful for identifying 

the appliances that are in use during specific times 

of the day. By using these features, temporal and 

frequency-domain characteristics of the data were 

captured, which improved the predictive 

performance of the NILM technique. Table 1 depicts 

the consumption-related feature usage identified in 

this section. In the following section, the features 

proposed in this paper are elaborated.
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Fig. 4 Raw Data for Fridge 

 

 
Fig. 5 Processed Data for Fridge

 

Table 1 Extracted Features 
 

Notation Description 

Irms
* Current root mean square 

Vrms Voltage root mean square 

Pmax Maximum value of the power 

Pmin Minimum value of the power 

Ds Day section 

Pf Power Factor 

 

The six features used in the study, along with the 

formula used to calculate them and the reason for 

their selection are: 

 

1) Current Root Mean Square (Irms): This feature 

is calculated as the root mean square of the 

current data over a certain period of time. Irms 

is a commonly used feature in NILM research 

as it is a good indicator of the energy consumed 

by an appliance. By using Irms, we can get a 

better understanding of how much energy an 

appliance is consuming at a given time. The 

formula is: 

 

2

1

1
( ( ) )

=

= 
T

i

Irms I i
T   (2) 

where T  is the number of samples and 
( )I i

is the 

current value at time i . 

 

2) Voltage Root Mean Square (Vrms): This feature 

is calculated as the root mean square of the 

voltage data over a certain period of time. Vrms 

is a commonly used feature in NILM research 

as it is a good indicator of the power consumed 

by an appliance. By using Vrms, we can get a 

better understanding of how much power an 

appliance is consuming at a given time. The 

formula is: 

 

2

1

1
( ( ) )

=

= 
T

i

Vrms V i
T   (3) 

where T  is the number of samples and 
( )V i

 is the 

voltage value at time i . 

 

3) Max Power: This feature is calculated as the 

maximum power value over a certain period of 
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time. The max power feature is important as it 

represents the maximum energy consumption 

of an appliance. By using max power, we can 

get a better understanding of how much energy 

an appliance is consuming at its peak 

consumption. The formula is: 

max max( ( ))=P P i
  (4) 

where P(i) is the power value at time i. 

 

4) Min Power: This feature is calculated as the 

minimum power value over a certain period of 

time. The min power feature is important as it 

represents the minimum energy consumption 

of an appliance. By using min power, we can 

get a better understanding of the base 

consumption of an appliance. The formula is: 

 

min min( ( ))=P P i
  (5) 

where is the power value at time. 

 

5) Power factor: This feature is calculated as the 

ratio of real power to apparent power. Power 

factor is an important feature as it captures the 

relationship between the real and apparent 

power, which can be helpful in identifying the 

nature of the load. By using power factor, we 

can get a better understanding of how much of 

the energy consumed by an appliance is being 

used effectively. The formula is: 

 

=f

P
P

S   (6) 

where is the real power and is the apparent power. 

 

6) Day Section: This feature is used to partition 

the data into 6 time slots, which correspond to 

different times of the day: early morning, 

morning, noon, evening, night, and late night. 

This feature is used to capture the consumption 

pattern of the appliances based on the time of 

the day. By using day section, we can get a 

better understanding of when an appliance is in 

use and how it affects the overall energy 

consumption. Table 2 describes the Day 

section and its time range. 

 

Table 2 Extracted Features 

Section Time Range 

Early morning 4am - 8am 

Morning 8am - 12pm 

Noon 12pm - 4pm 

Evening 4pm - 8pm 

Night 8pm - 12am 

Late night 12am - 4am 

 

In this study, different appliances were classified 

using NILM techniques. The most essential step in 

the NILM process is feature extraction. Six features 

(Irms, Vrms, Pmax, Pmin, Pf, and Ds) were extracted from 

the IAWE dataset to enhance the predictive 

performance of the NILM. 

 

After extracting the features, the next step included 

classifying the different appliances using the 

extracted features. Six machine learning algorithms 

were used to classify the appliances. The algorithms 

used included DT, SVM, KNN, NB and the RF. 

 

2.2.1 Decision Tree (DT) 

 

Each branch of a decision tree can be viewed as an 

if-then statement. A decision tree is constructed 

using a hierarchical approach. The branches are 

generated by dividing the dataset into subsets based 

on the most significant characteristics. The final 

classification occurs at the decision tree’s leaves. 

Unlike other algorithms, a decision tree is easy to 

understand and visualize, requires little data 

preparation, and handles numerical and categorical 

data quite well. The hyper-parameters max_depth, 

min_samples, samples_leaf, max_features assist 

tuning decision trees for better results. 

 

2.2.2 Random Forest (RF) 

 

Random Forest is a machine learning algorithm that 

utilizes an ensemble of decision trees. It combines 

insights from multiple predictors by employing 

bagging, a technique that involves training each tree 

on a random sample of the original dataset. This 

method provides better generalization compared to 

a single decision tree, but it can be less interpretable 

due to the model's multiple layers. Common 

hyperparameters used for tuning Random Forest 

include n_estimators, max_features, max_depth, 

min_samples_split, min_samples_leaf, and 

bootstrap. 

 

2.2.3. Support Vector Machine (SVM) 

 

The Support Vector Machine (SVM) is a machine 

learning algorithm that identifies the optimal way to 

classify data based on its position relative to a 

positive/negative class border. It achieves this by 

finding a hyperplane that maximizes the margin or 

distance between data points of different classes. 

Similar to decision trees and random forests, SVM, 

also known as the Support Vector Classifier (SVC), 

can be employed for both classification and 

regression tasks. One notable advantage of SVM is 

its memory efficiency. It utilizes a subset of training 

points, called support vectors, in the decision 

function, making it suitable for datasets with a large 

number of samples. Common hyperparameters for 

tuning SVM include C, kernel, and gamma. 

 

2.2.4. Naive Bayes (NB) 

 

Naive Bayes is founded on Bayes’ Theorem, which 

is a method for calculating conditional probability 
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based on prior knowledge and the naive assumption 

that each attribute is independent of one another. 

The greatest advantage of NB is that, unlike the 

majority of machine learning algorithms, it works 

relatively well even with minimal amounts of 

training data. Gaussian Naive Bayes is a 

classification algorithm based on the normal 

distribution. The common hyper-parameters are 

priors, var_smoothing. 

 

2.2.5. K-Nearest Neighbour (KNN) 

 

This method depicts each data point in an n-

dimensional space characterized by n attributes. 

Additionally, it computes distances between points 

and assigns unknown data labels based on the 

closest observed data labels. KNN-based 

classification is a form of lazy learning because it 

does not seek to build a generic internal model; 

rather, it just retains examples of the training data. 

Classification is determined by the simple majority 

vote of each point’s k nearest neighbors. Due to the 

fact that KNN retains all previous instances and 

requires examining the complete dataset to classify 

a new test point, the nominal training but extensive 

testing duration of KNN incurs equivalent memory 

and computing costs. This approach is simple, 

robust to noisy training data, and successful with 

massive data. The common hyper-parameters are 

n_neighbours, weights, leaf_size, P. 

 

KNN is a supervised learning technique consisting 

of a given labeled dataset that contains training sets 

and aims to reflect the correlation between x and y. 

The purpose of KNN is to discover a function: 
h y

, such that a new test point 
,x

 
( )h x

 may 

confidently deduce the corresponding output 
y

. In 

KNN categorization, a new test point is assigned to 

the category with the highest availability among its 

k nearest neighbors based on the number of votes 

cast by its neighbors. If 1=k , then a new point is 

given to the category of its only nearest neighbor. 

 

These algorithms were selected for their popularity 

and effectiveness in classification tasks (Rafati et 

al., 2022). The hyperparameters for each algorithm 

will be tuned to achieve the best performance. After 

applying these algorithms, the best algorithm will be 

selected based on the performance metrics. 

 

2.3 Fine-Tuning Classification of Appliances 

Algorithms Through Parameter 

Optimization 
 

Fine-tuning classification refers to the process of 

adjusting the parameters of a machine learning 

model in order to improve its performance on a 

specific task. Hyperparameters are parameters of a 

machine learning algorithm that are not learned from 

data and need to be set before training. Optimizing 

hyperparameters is important because it can 

significantly improve the performance of the model. 

There are different types of optimization methods, 

such as manual search, random search, and grid 

search. In this research, we used grid search to 

optimize the hyperparameters of the classification 

algorithms. Grid search is a systematic way of 

exploring a range of hyperparameters by defining a 

grid of values to search over. 

 

Performing optimization is important because it 

helps to identify the best combination of 

hyperparameters for the model, which in turn can 

improve the accuracy of the classification. In this 

study, the grid search was adopted to optimize the 

hyperparameters of the six classification algorithms. 

The methodology approach involved defining a 

parameter grid for each algorithm and using 

GridSearchCV, a function from the scikit-learn 

library, to perform a grid search. The best 

combination of hyperparameters was selected based 

on the highest accuracy score. The results were 

summarized in terms of the best accuracy score and 

the best combination of hyperparameters for each 

algorithm. 

 

Table 3 Machine Learning Algorithm and 

Related Parameters 

 

Method Parameter Value 

Random Forest Splits 5 

 No. of Estimators 10 

Support Vector C 100 

 Gamma 0.9 

 Kernel RBF 

Decision Tree Criterion Entropy 

 Maximum Depth 8 

Gradient Boosting Learning rate 0.01 

 Maximum Depth 3 

 No. of Estimators 500 

Logistic Regression C 1000 

 Penalty 12 

 Solver lbfgs 

KNN Metric Manhattan 

 No. of neighbours 3 

 

Table 3 presents the machine learning algorithms 

used in the study along with their corresponding 

parameters and values that were fine-tuned through 

optimization. The algorithms and their parameters 

were selected based on their potential to perform 

accurate classification of appliances. 

 

For the RF algorithm, the number of splits was set to 

5, and the number of estimators was set to 10. For 

the SVM algorithm, the value of C was set to 100, 

gamma was set to 0.9, and the kernel was set to RBF. 

For the DT algorithm, the criterion was set to 

Entropy, and the maximum depth was set to 8. For 

the GB algorithm, the learning rate was set to 0.01, 
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the maximum depth was set to 3, and the number of 

estimators was set to 500. For the LR algorithm, the 

value of C was set to 1000, the penalty was set to 12, 

and the solver was set to lbfgs. For the KNN 

algorithm, the metric was set to Manhattan, and the 

number of neighbors was set to 3. 

 

In summary, fine-tuning classification through 

hyperparameter optimization is an important step in 

improving the performance of machine learning 

models. Grid search is a commonly used method for 

hyperparameter optimization because it allows for a 

systematic exploration of a range of 

hyperparameters. In this study, we used grid search 

to optimize the hyperparameters of several 

classification algorithms, which led to improved 

accuracy in the classification of appliances. 

 

2.3.1. Evaluation of Results 

 

Although the accuracy metric is often used to 

evaluate classification performance, it can lead to a 

misleading conclusion, especially for outlier 

detection where the minority is typically 

underrepresented and thus becomes a skewed 

performance measure for the majority class (Truong 

et al., 2013). Therefore, we are using F-measure and 

G-mean as classifier performance evaluation 

metrics. 

2.3.2. F-measure and G-mean 

 

Consider a two-class problem labeled TP and TN. 

As a confusion matrix, Table 4 illustrates the overall 

performance of the classifier. 

 

Table 4 Confusion Matrix 
 

 
Predicted 

Positive 

Predicted 

Negative 

Actual Positive 
True Positives 

(TP) 

False Negatives 

(FN) 

Actual Negative 
False Positives 

(FP) 

True Negatives 

(TN) 

 

In the confusion matrix in Table 4, TP (true positive) 

represents a group of correctly identified positive 

samples, while TN (true negative) represents the 

group of correctly identified negative samples. On 

the other hand, FP (false positive) is a collection of 

positive points that are incorrectly identified as 

negative, and FN (false negative) is a collection of 

negative points that are incorrectly detected as 

positive. 

 

The overall accuracy or error rate can be calculated 

using the confusion matrix. However, for 

unbalanced learning tasks, precision and recall are 

more informative metrics. They can be calculated 

based on the confusion matrix as follows: 

+
=

+ + +

TP TN
Accuracy

TP FP TN FN
          (7) 

1= −Error Rate Accuracy            (8) 

2 
− =

+ + +

Precision Recall
F measure

TP FP TN FN
        (9) 

− = +G mean Precision Recall        (10) 

where Precision and Recall can be evaluated based 

on the confusion matrix, which is defined as follows: 

=
+

TP
Precision

TP FP
           (11) 

=
+

TP
Recall

TP FN
            (12) 

Since the precision value represents the exactness of 

the classifier and the recall value represents its F-

measure and G-mean, which are the mixture of 

precision and recall, are more comprehensive and 

extensively employed in unbalanced learning. 

 

2.3.4 Use of F-measure and G-mean 

 

In this research, the focus was on utilizing more 

comprehensive evaluation metrics, namely F-

measure and G-mean, as performance indicators for 

classifiers, rather than relying solely on accuracy. 

These metrics were chosen to address the challenges 

posed by unbalanced learning tasks, where the 

minority class is typically underrepresented.  

 

By incorporating precision and recall, the F-measure 

captures the delicate balance between correctly 

identifying positive samples and minimizing both 

false positives and false negatives. This metric 

provides a more nuanced and balanced assessment 

of the classifier's performance in classification tasks. 

Additionally, the G-mean metric considers both the 

true positive rate and the true negative rate, 

providing a holistic measure of performance that 

considers both classes. This metric offers a broader 

perspective on the classifier's effectiveness in 

handling different class distributions.  

 

Adopting F-measure and G-mean as evaluation 

metrics ensures a more accurate evaluation of the 

classifier's performance in addressing class 

imbalance issues. It allows for a comprehensive 

understanding of the classifier's effectiveness in the 

specific classification task at hand. 

 

3 Results and Discussion 
 

This section discusses the results that were obtained. 
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3.1 Classification of Appliance 
 

Machine learning techniques were employed to 

classify the appliances used in this study. Since the 

dataset was a labelled dataset, supervised machine 

learning algorithms were employed. Extensive 

review of literature also affirmed the use of 

supervised machine learning techniques to classify 

the electrical appliances in this study. This is largely 

because, supervised machine learning techniques 

outperformed unsupervised machine learning 

techniques in the various study conducted by other 

researchers (Alghawazi et al., 2022). Also, it is 

possible to analyze and understand the logic behind 

their classification process, which is, not always 

possible with other techniques. For example, in 

neural networks, it is difficult to understand what 

happens during the classification as well as which 

features play the most important role for the device 

identification, since they act as a black box. Six 

supervised ML algorithms; Support vector Machine, 

Random Forest, Decision Trees, Gradient Boosting, 

K-Nearest Neighbour and Logistic Regression were 

used and their accuracies were compared. 

 

Table 5 Experiment 1 - Classification of Appliances Using Current Root Mean Square 

Model Accuracy Error Rate Precision Recall F-Measure G-Mean Time/sec 

KNN 0.9359 0.0641 0.9292 0.929 0.9292 0.9571 252s 

Logistic Regression 0.6041 0.3959 0.6205 0.6205 0.6205 0.7572 220.7 

Decision Tree 0.9351 0.0649 0.9264 0.926 0.9264 0.9554 1.5s 

Random Forest 0.9997 0.0003 0.9994 0.999 0.9994 0.9996 239.2s 

SVM 0.9101 0.0311 0.9122 0.902 0.9113 0.9201 14421 

Gradient Boosting 0.9247 0.0010 0.9201 0.911 0.9212 0.9510 52211 

 

Table 6 Experiment 2 - Classification of Appliances Using Extracted Features 

Classifier Accuracy Error Rate Precision Recall F-Measure G-Mean Time/sec 

KNN 0.9988 0.0012 0.9979 0.9979 0.9979 0.9987 380s 

Logistic Regression 0.9942 0.0058 0.9915 0.992 0.9915 0.9949 13.7s 

Decision Tree 0.9994 0.0006 0.9994 0.9994 0.9994 0.9996 2.7 

Random Forest 0.9204 0.0796 0.9203 0.9203 0.9203 0.9516 207.9 

SVM 0.9988 0.0012 0.9973 0.9973 0.9973 0.9984 13464 

Gradient Boosting 0.96547 0.0008 0.9773 0.9754 0.9942 0.9522 49902 

 

3.2 Evaluation of Classification Algorithms 
 

In Experiment 1, the classification was based solely 

on the current root mean square (Irms) feature. The 

algorithms performances varied, with Random 

Forest achieving the highest accuracy of 0.9997, 

while Logistic Regression had the lowest accuracy 

of 0.6041. It is important to note that Logistic 

Regression demonstrated a relatively lower 

performance compared to other algorithms. The 

precision and recall values ranged from 0.6205 to 

0.9994, indicating varying degrees of success in 

correctly classifying the appliances. Random Forest 

achieved high precision, recall, F-measure, and G-

mean values, suggesting its effectiveness in 

accurately classifying appliances based on a single 

feature. 

 

In Experiment 2, multiple extracted features were 

used for appliance classification. The results showed 

that utilizing multiple features generally improved 

the classification performance compared to using 

only the Irms feature. Decision Tree achieved the 

highest accuracy of 0.9994, while Logistic 

Regression had an improved accuracy of 0.9942 in 

this experiment. The precision and recall values 

were high across the algorithms, ranging from 

0.9915 to 0.9994, indicating their effectiveness in 

accurately classifying appliances using multiple 

features. The F-measure and G-mean values further 

supported the algorithms' overall performance. 

 

Comparing the two experiments, it is evident that 

using multiple features led to improved 

classification accuracy in most cases. This 

highlights the importance of considering multiple 

aspects of the electrical signal when attempting to 

classify appliances accurately. While Experiment 1 

relied solely on the Irms feature, Experiment 2 

incorporated additional features, resulting in 

enhanced performance. 

 

However, it is important to note that the choice of 

algorithm also played a significant role in the 

classification performance. Different algorithms 

showed varying degrees of success, emphasizing the 

need to carefully select the appropriate algorithm 

based on the specific characteristics of the dataset 

and the appliances being classified. 

 

Furthermore, it is worth considering the 

computational time required by the algorithms. 

Experiment 2 generally exhibited longer execution 
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times compared to Experiment 1 due to the 

increased complexity of utilizing multiple features. 

This aspect should be considered when deploying 

these classification models in real-time scenarios or 

with large datasets. 

 

In conclusion, the combination of Experiment 1 and 

Experiment 2 demonstrated the effectiveness of 

utilizing multiple features for appliance 

classification. The results indicated that 

incorporating multiple features generally improved 

the accuracy, precision, recall, F-measure, and G-

mean values compared to relying on a single feature.  

 

The choice of algorithm remains crucial in achieving 

optimal classification performance. These findings 

contribute to the understanding of machine learning 

techniques for appliance classification and can guide 

the selection of appropriate approaches for similar 

tasks in the future. 

 

 
Fig. 6 Classification Accuracy of Appliances in 

Experiment 1 and 2 
 

 
Fig. 7 F-Measure of Appliances Classification in 

Experiment 1 and 2 
 

 
Fig. 8 Error Rate of Appliances Classification in 

Experiment 1 and 2 
 

 
Fig. 9 Recall of Appliances Classification in 

Experiment 1 and 2 

 
Fig. 10 G-Mean of Appliances Classification in 

Experiment 1 and 2 

 

4 Conclusions and Recommendations 
 

This research aimed to enhance the predictive 

performance of Non-Intrusive Load Monitoring 

(NILM) through the combination of various 

electrical features using the IAWE dataset. Two 

experiments were conducted, with Experiment 1 

utilizing only the current root mean square (Irms) 

feature, and Experiment 2 incorporating six 

electrical characteristics: Irms, voltage root mean 

square (Vrms), max power, min power, power 

factor, and day section. The performance of six 

machine learning classification algorithms was 

evaluated and compared in both experiments. 
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4.1. Conclusions 
 

The results indicated that the application of the six 

extracted features significantly outperformed the 

standalone use of Irms in terms of accuracy, 

precision, recall, and F-measure. Specifically, K-

Nearest Neighbors (KNN), Decision Tree (DT), and 

Random Forest (RF) classifiers demonstrated 

superior performance compared to Logistic 

Regression, Support Vector Machine (SVM), and 

Naive Bayes. 

 

Moreover, the KNN classifier consistently achieved 

the highest overall accuracy and F-measure in both 

experiments, suggesting its effectiveness for NILM 

applications. When all six features were utilized, the 

overall accuracy and F-measure were further 

improved, underscoring the importance of feature 

extraction in NILM. 

 

4.2. Recommendations 
Based on the findings of this research, several 

recommendations can be made: 

 

1) Feature Extraction: Future NILM studies 

should consider incorporating the six electrical 

features (Irms, Vrms, max power, min power, 

power factor, and day section) for feature 

extraction. This comprehensive set of features 

has demonstrated superior performance in 

accurately classifying appliances. 

 

2) Classifier Selection: The KNN classifier 

exhibited the best overall performance in terms 

of accuracy and F-measure. Therefore, it is 

recommended to utilize the KNN classifier for 

NILM applications. However, further 

experimentation and comparison with other 

classifiers can be explored to determine the 

most suitable classifier for specific scenarios. 

 

3) Performance Evaluation: Future research 

should focus on evaluating additional machine 

learning algorithms and advanced techniques 

to further improve the performance of 

appliance classification in NILM. Techniques 

such as deep learning approaches may provide 

valuable insights and enhance accuracy. 

 

4) Dataset Expansion: To validate the findings 

and generalize the results, it is recommended to 

incorporate additional datasets from diverse 

sources and geographical locations. This would 

enable a more comprehensive evaluation of the 

proposed methodology and its applicability in 

different settings. 

 

Overall, this study highlights the significance of 

feature extraction and classifier selection in 

improving the performance of NILM. By adopting 

the recommended approaches, practitioners and 

researchers can achieve more accurate appliance 

classification, leading to efficient energy 

management and conservation. 
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