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Abstract 
 

Buildings are the most common element in urban environments, and their accurate and efficient extraction from remotely 

sensed data is essential for various applications, such as urban planning and monitoring, population estimation, disaster 

planning, management and response, and updating geographic databases. However, conventional techniques for extracting 

buildings from remotely sensed data pose challenges due to the complexity and difference in buildings, changes in scenery, 

imaging sensors, and conditions. They require expert knowledge and expertise, thus undermining the applicability of these 

conventional approaches and making them time-consuming. The aim of the research is to evaluate the applicability and 

performance of deep neural networks (DNNs) in accurately identifying and delineating buildings within the Ghanaian context. 

To accomplish this objective, a supervised learning approach was adopted, and the U-Net model and its variant UResNet-34 

were trained on a labelled dataset. The dataset comprised labelled UAV-derived orthophotos capturing urban areas with diverse 

architectural styles and building patterns in Ghana. The evaluation results indicated that U-Net and UResNet-34 models 

achieved promising performance in building extraction tasks. Remarkably, the U-ResNet-34 model, benefiting from the 

residual connections of ResNet-34, exhibited improved performance compared to the original U-Net model. The implications 

of these findings are significant, as they contribute to identifying informal settlements and estimating population density. 

Additionally, it aids in disaster response planning and post-event damage assessment. In conclusion, this study highlights the 

effectiveness of DNNs for automatically extracting buildings from UAV orthophotos in the Ghanaian context, offering 

valuable insights for informed decision-making in urban and environmental domains. 

 

Keywords: Buildings, Extraction, UAVs, Deep Neural Networks, U-Net, ResNet-34 

 

1 Introduction 

 

The rapid urbanisation and population growth 

witnessed in recent years have propelled the demand 

for efficient land management and urban planning 

processes. Accurately identifying and extracting 

buildings from remotely sensed data is pivotal in 

supporting decision-making for sustainable urban 

development, disaster response, and environmental 

monitoring (Erdem and Avdan, 2020). Unmanned 

Aerial Vehicles (UAVs) equipped with advanced 

sensors capture high-resolution images for 

generating orthophotos, providing a valuable data 

source for detailed mapping and analysis of urban 

environments (Dey et al., 2022). These UAV-

derived orthophotos offer an up-to-date and cost-

effective means of acquiring geospatial information, 

thus creating an opportune environment for 

automated building extraction to provide timely and 

accurate information for urban planners and 

authorities (Sumer and Turker, 2013) 

 

Conventional techniques for building extraction 

from UAV-derived orthophotos rely typically on 

manual feature engineering and rule-based 

algorithms, thus presenting formidable challenges 

due to the complexity and diversity of buildings, 

variations in scenery, imaging sensors, and 

environmental conditions (Chuangnong Li et al., 

2021; Liu et al., 2020) Furthermore, the expert-

driven nature of these conventional approaches 

hampers their applicability and renders them time-

consuming, impeding timely and large-scale 

building detection (Abdollahi and Pradhan, 2021). 

Traditional Convolutional Neural Netwroks (CNNs) 

can automatically learn hierarchical representations 

from data and capture intricate features. Thus, CNNs 

have shown better results in image segmentation 

tasks than handcrafted computer vision algorithms.  

 

In recent years, DNNs have become a 

transformative force in computer vision tasks, 

achieving state-of-the-art object detection and 

segmentation performance (Guo et al., 2020). The 

remarkable capability of DNNs to automatically 

learn hierarchical features from data and capture 

intricate patterns, rather than relying on handcrafted 

features, has garnered significant attention in the 

remote sensing community (Jin et al., 2021; Zhang 

et al., 2020). This has led to a shift towards 

exploring the potential of DNNs in automating 

building extraction processes from remotely sensed 

data (Hu et al., 2021). CNNs have since been 

advocated and utilised to automate the semantic 

segmentation of buildings. For example, Saito et al. 

(2016) proposed using CNN-based roads and 

buildings segmentation algorithm using aerial 

images. 

 

Similarly, Alshehhi et al. (2017) presented a single 

batch-based CNN to segment roads and buildings 

from high-resolution remotely sensed images. 
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Although these studies attained remarkable results, 

the proposed models could not perform the dense 

pixel-wise predictions, resulting in relatively fuzzy 

object boundaries and limiting the models’ 

suitability for building segmentation from high-

resolution images. Long et al. (2015) put forward 

the fully convolutional network (FCN) architecture 

to address the limitations of traditional CNNs in 

semantic segmentation. FCNs extended the CNN 

structure to permit dense prediction, facilitating 

pixel-level classification and segmentation 

(Abdollahi and Pradhan, 2021). In addition, FCNs 

can produce output feature maps that maintain the 

input dimensions, thus providing precise object 

boundaries and enhancing the accuracy of building 

extraction from remote sensing imagery (Liu et al., 

2019). These capabilities are demonstrated in the 

studies by Bittner et al. (2017) and Maggiori et al. 

(2017). However, traditional FCNs are associated 

with inefficient and inaccurate performance as these 

networks drop low-level feature maps containing 

significant and intricate details during the 

segmentation process and only utilise high-level 

feature maps (Yang et al., 2018). Various encoder-

decoder networks capable of reusing low-level 

feature maps with rich details have been proposed to 

address these limitations. U-Net, proposed by 

Ronneberger et al. (2015), has gained significant 

attention in building segmentation tasks among the 

encoder-decoder networks. U-Net utilises skip 

concatenation connections, allowing it to harness 

valuable information from both the encoder and 

decoder components, resulting in precise and well-

defined building boundaries. Furthermore, U-Net 

can be trained using less data and requires fewer 

computational resources (Pan et al., 2020). Thus, 

this study chooses U-Net as the primary network for 

building segmentation. 

 

The motivation for this work arises from the absence 

of prior investigations that have specifically 

evaluated the applicability and performance of 

DNNs in accurately identifying and delineating 

buildings from UAV-derived orthophotos within the 

Ghanaian context, where the demand for efficient 

urban planning and management processes has 

grown exponentially due to rapid urbanisation and 

population growth. A supervised learning paradigm 

was adopted to achieve this objective by employing 

the U-Net model and its variant UResNet-34, 

designed by replacing the original U-Net’s encoder 

path with a residual network with thirty-four (34) 

layers (ResNet-34). 

 

The key contributions of this research include: 

• Investigating the application of U-Net and 

UResNet-34 for building extraction from 

UAV-derived orthophotos within the 

Ghanaian context. 

• Evaluating the generalisation capabilities 

of the proposed approach across diverse 

urban landscapes. 

• Providing insights into the potential 

challenges and future directions for 

advancing automatic building extraction 

methods using DNNs. 

 

The subsequent sections of this paper delve into the 

study area, data utilised, detailed methodology, and 

experimental results, followed by discussions of the 

findings, research implications, and future research 

directions. 

 

1.1 Related Works 
 

This section presents a comprehensive analysis of 

related works focusing on building extraction from 

high-resolution remote sensing images using U-Net 

and its variants. The selection of papers 

encompasses various research studies that have 

leveraged U-Net and its modifications to address the 

challenges of building segmentation in complex 

urban environments. 

 

Pan et al. (2020) proposed a U-Net-based urban 

village mapping paradigm to characterise individual 

buildings in high-density urban settlements. The U-

Net model achieved impressive results, with an 

overall accuracy of over 86% for building 

segmentation and over 83% for classification, 

demonstrating the feasibility and efficiency of deep 

learning for mapping unplanned urban settlements. 

Liu et al. (2020) applied U-Net with a ResNet 

encoder to remote sensing image segmentation for 

building extraction. Their model achieved a high 

MIoU of 0.83, demonstrating its effectiveness in 

accurately segmenting buildings. However, the 

authors acknowledged the need for further 

improvements, such as refining building outlines 

and reducing misclassifications. Guo et al. (2020) 

proposed AMUNet, a multi-loss neural network 

based on U-Net with an attention mechanism for 

building segmentation. The proposed showcased 

significant improvements in building segmentation 

results compared to other methods.  

 

The model demonstrated superior performance on 

public datasets, validating its efficiency for building 

object extraction from aerial imagery. Wagner et al. 

(2020) introduced U-net-id, a CNN architecture for 

building instance segmentation. The proposed 

method achieved excellent semantic and individual 

instance segmentation results, with a mean IoU of 

0.582 and an overall accuracy of 97.67% for 

delineating individual buildings. Erdem and Avdan 

(2020) compared diverse U-Net variants for 

building extraction, including Vgg16 U-Net, 

InceptionResNetV2 U-Net, DenseNet121 U-Net, 

and a majority voting method. Evaluation using the 

Inria Aerial Image Labelling Dataset showed 
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promising results for the models, with the majority 

voting approach achieving the best F1 score of 

0.877. Abdollahi and Pradhan (2021) introduced 

MultiRes-UNet, an enhanced version of U-Net, for 

building extraction. The model utilised the MultiRes 

block and convolutional operations with skip 

connections to enhance feature learning and achieve 

better results, outperforming other state-of-the-art 

models.  

 

Wei et al. (2021) presented a U2-net model for 

building outline extraction by modifying the binary 

cross-entropy loss function. Compared to other 

models, the model achieved better accuracy, precise 

positioning, and refined building outlines without 

needing postprocessing steps like non-maximum 

suppression. Li et al. (2021) introduced a robust 

DNN termed HAC U-net. The model leverages 

attention units to replace certain skip connections, 

capturing varying receptive fields and enhancing 

spatial and contextual information extraction at 

different scales. Experimental results demonstrated 

that HAC U-net outperformed other baseline 

models, achieving an accuracy of 93.90% and an 

impressive intersection over union (IoU) of 61.92%. 

Xu et al. (2021) presented HA U-Net, a holistically-

nested attention U-Net, which exhibited improved 

segmentation accuracy for building extraction from 

high-resolution remote sensing images. By 

incorporating attention mechanisms, multi-scale 

nested modules, and a weighted loss function, the 

proposed model successfully addressed the 

challenge of blurry segmentation in higher-

resolution images. Li et al. (2021) presented a 

simple yet powerful U-Net variant capable of 

efficiently extracting buildings from farmland areas 

using Google and Worldview images. The model 

effectively addressed the challenges of complex 

ground features and scattered buildings in farmland 

areas. By incorporating ResNet architecture into the 

U-Net framework and introducing both spatial and 

channel attention mechanisms, the resulting model 

attained remarkable performance with an accuracy 

of 97.47% and an F1 score of 85.61%., 

outperforming other semantic models.  

 

In a separate study, El Asri et al. (2022) introduced 

a convolutional neural network (CNN)-based 

system that combined the strengths of the U-Net and 

VGG19 architectures for building extraction from 

high-resolution satellite imagery. Integrating these 

two architectural approaches resulted in notable 

improvements in model accuracy, underscoring the 

potential of hybrid CNN systems in this domain. 

 

Temenos et al. (2022) investigated the utilisation of 

U-Net and its various adaptations, including the 

Residual U-Net and Attention U-Net, for the 

automated extraction of buildings from high-

resolution satellite imagery. The study’s findings 

highlighted the enhanced performance of U-Net 

architectures, particularly in accurately pinpointing 

building structures along their corners and edges. 

 

The reviewed works demonstrate the widespread 

application and effectiveness of U-Net and its 

variants in building extraction from high-resolution 

remote sensing images. Various modifications, such 

as attention mechanisms, residual blocks, and multi-

scale fusion, have been introduced to improve the 

accuracy as well as performance of U-Net-based 

models. However, the datasets primarily utilised 

aerial and satellite images from developed countries, 

characterised by well-laid-out buildings. In contrast, 

access to such imagery is limited and costly for 

developing regions like Ghana. Furthermore, the 

freely available datasets in these areas are often 

outdated and insufficient to keep up with the rapid 

pace of urbanisation in Ghana. As such, this study 

proposes to exploit the benefits of UAV 

orthomosaics and U-Nets and its variant, UResNet-

34, to segment buildings within Ghana.  

 

2 Study Areas and Data Used 
 

The datasets used for this study were obtained 

mainly from southern Ghana, notably Greater 

Accra, Western, and Central Regions. The data for 

training the DNNs consisted of orthophotos of the 

East Legon Area (ELA) – depicted in Fig. 1(a), and 

UMaT Area (UA) – depicted in Fig. 1(b), located in 

the Accra and Tarkwa townships. These areas were 

chosen due to the data availability and various 

architectural styles and building patterns, providing 

a representative sample to train and evaluate the 

DNN models. For ELA, a WingtraOne vertical take-

off and landing (VTOL) UAV was used to acquire 

aerial images and subsequently processed using 

Pix4D mapper to generate an orthomosaic, which is 

a georeferenced, seamless, and orthorectified 

representation of the area. The orthomosaic had a 

spatial resolution of 3 cm/p and covered an area of 

148.84 ha.  

 

For UA, aerial images were collected using a 

Phantom 4 Pro (P4P) UAV, and Agisoft Metashape 

was exploited for the orthomosaic generation. The 

resulting orthomosaic had a spatial resolution of 7.5 

cm/p and covered an area of approximately 130.60 

ha. Both orthophotos were of three red-green-blue 

(RGB) bands, and their structures were manually 

digitised. The digitising was performed using QGIS 

software and ensures that an accurate and detailed 

annotation, capturing the complex geometries of 

buildings in the orthomosaic, is obtained. ELA had 

2221 manually digitised polygons representing 

building structures, while UA had 152 structures 

annotated as buildings. 
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Fig. 1 (a) Orthomosaic of ELA and (b) 

Orthomosaic of UA 

 

The shapefiles, obtained after the digitising process 

and containing the outlines of each building, are then 

converted to binary masks. In the binary mask, 

pixels representing building areas were designated 

as white while background pixels were set to black, 

each having pixel values of 1 and 0, respectively. 

These binary masks served as ground truth 

representations, precisely indicating the locations of 

buildings in the orthomosaics. Next, the binary 

masks with the original RGB images are used to 

create training data pairs. Each training pair is then 

sliced into 256 ×  256 image dimensions, allowing 

the data to fit computer memory and providing 

ready-to-use data for DNN training. In addition, the 

training pair enables the DNNs to learn the spatial 

correspondence between building footprints and 

their visual appearance. Lastly, data augmentation 

techniques were applied to increase the 

generalisation potential of the DNNs and escape 

overfitting. These techniques include random 

rotations, translations, scaling, and flipping of the 

binary masks and corresponding RGB images. 

Generally, augmentation diversifies the training data 

and helps the DNN learn to handle building 

appearance, orientation, and scale variations. Fig. 2 

depicts the general workflow for generating the 

training data. 
 

 
Fig. 2: Training Data Generation Workflow 
 

To evaluate the trained DNNs, orthomosaics from 

four distinct localities, each characterised by 

different building configurations and designs, were 

utilised. The first locality, L1, predominantly 

featured buildings with well-designed and organised 

architectural structures. In the second locality, L2, 

the buildings were predominantly slums, with a few 

large structures interspersed. Locality 3, known as 

L3, was distinguished by sparse buildings and 

abundant vegetation, with the buildings’ rooftops 

having a similar texture to the surrounding 

vegetation—lastly, the fourth locality, L4, 

comprised buildings of varying architectural designs 

and sizes. While most buildings in L4 were properly 

laid out, a small section exhibited a slum layout. 

Furthermore, the generalisability and capability of 

the proposed DNNs over more extensive areas were 

also verified using two other orthomosaics. Fig. 3 

and Table 1 represent the orthomosaics of these test 

localities and further details regarding the training, 

test, and verification datasets, respectively 

.

 
Fig. 3: Orthomosaics for Evaluating Trained DNNs 
 

Table 1 Details of Datasets Used 

S. No Area Region UAV Used Purpose Resolution 

1 East Legon Greater Accra WingtraOne Training 3 cm/p 

2 UMaT Western P4P Training 5 cm/p 

3 L1 – Spintex- Manet Greater Accra P4P Evaluation 4 cm/p 

4 L2 – UMaT  Western P4P Evaluation 5 cm/p 

5 L3 – UMAT  Western P4P Evaluation 5 cm/p 

6 L4 – East Legon Greater Accra P4P Evaluation 3 cm/p 

7 Abnabna Central  P4P Verification 4.5 cm/p 
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3 Proposed Methodology 
 

This section describes the architecture of the two 

DNNs utilised for this study, mainly U-Net and 

UResNet-34. 

 

3.1 U-Net 
 

U-Net is a DNN introduced by Ronneberger et al. 

(2015) and was designed for semantic segmentation 

tasks. U-Net is known for its unique and efficient 

design, making it widely adopted and influential in 

various image segmentation applications. Its 

architecture is based on an FCN and is characterised 

by its U-shaped pattern, giving it its name. The 

network consists of two main parts: the contracting 

path (encoder) and the expansive path (decoder), as 

shown in Fig. 4. 

 

The encoder’s responsibility is to acquire high-level 

features and the broader context from the input 

images. It consists of a series of convolutional layers 

and max-pooling layers. These convolutional layers 

perform local feature extraction by progressively 

reducing the spatial dimensions of the feature maps 

while increasing the network’s depth. The max-

pooling layers, on the other hand, reduce the spatial 

dimensions, allowing the network to capture a larger 

context. The convolutional and max-pooling layers’ 

operations enable the contracting path to extract 

abstract representations of the input images, 

enabling the network to understand the objects in the 

images. 

 

The decoder works with the encoder to reconstruct 

the segmented output. It employs two repeated 3 × 3 

convolution kernels, a down-sampling layer of 2 × 2 

window size combined with a rectified linear unit 

(ReLU) activation function, and a 2 × 2 transpose 

convolutional layer to up-sample the feature maps. 

This configuration enables the encoder to recover 

the spatial resolution lost during the pooling 

operations in the encoder. The up-sampled feature 

maps are concatenated with the corresponding 

feature maps from the encoder via skip connections. 

These skip connections permit the network to fuse 

multi-scale information effectively and enhance the 

network’s ability to perform precise localisation by 

combining local details directly from the contracting 

path to the global features in the expansive path. 

Ultimately, a convolution layer with a 1 × 1 kernel 

and a sigmoid function transforms every feature map 

into the desired outputs. 

 

 
Fig. 4: Architecture of U-Net 

 

3.2 U-Net with ResNet-34 Backbone 

(UResNet-34) 
 

To further enhance the performance of the U-Net, a 

ResNet-34 network is used to replace the decoder of 

the U-Net model. ResNet is a revolutionary 

architecture proposed by He et al. (2016), which 

introduced the concept of residual learning. It 

addressed the issue of vanishing gradients during the 

training of DNNs. The ResNet architecture uses 

shortcut connections, also known as residual 

connections, to skip one or more layers, allowing the 

network to learn residual mappings directly. The 

ResNet-34 is a variant of the original ResNet 

architecture with 34 layers. The fusion of multi-

scale information through skip connections and the 

powerful representation learning capabilities of 

ResNet-34 facilitate smoother and more efficient 

gradient flow during backpropagation, enabling 

feature reuse across layers, reducing the number of 

parameters, and balancing the model’s performance 

and accuracy. Fig. 5 illustrates the architecture of the 

ResNet-34 model. 
 

 
Fig. 5: Architecture of ResNet-34 

 

3.3 Evaluation Metrics 
 

Evaluating the performance of a DNN for a 

segmentation task is essential as it enables assessing 

its accuracy and effectiveness in accurately 

delineating objects of interest in an image. Several 

metrics are frequently employed to assess the 

effectiveness of a segmentation network, with each 
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metric offering valuable perspectives on various 

facets of the model’s performance. This study 

utilised six metrics: accuracy, precision, recall, F-1 

score, mean intersection over union (mIoU), and 

Cohen’s kappa, to evaluate the U-Net and UResNet-

34 models. 

 

Accuracy is the fraction of correctly segmented 

pixels (foreground and background) to the sum of 

the number of pixels in the image. Precision 

measures the ability of the model to distinguish 

positive samples among the predicted positive 

samples correctly and is computed as the fraction of 

correctly detected positive targets by the total sum 

of targets detected as positive. Recall computes the 

ability of the model to identify positive samples 

among all the actual positive samples. It is 

determined by dividing true positives by the total 

actual positives. F1-score is the harmonic mean of 

precision and recall and provides a balanced 

measure of the model’s performance. Intersection 

over union (IoU) measures the spatial alignment 

between the predicted and ground truth 

segmentation masks, evaluating the ratio of their 

intersection to their union. mIoU is the average of 

IoU, and it is calculated across all classes in the 

segmentation task, providing an overall indicator of 

the model’s effectiveness in segmenting diverse 

objects in the image. Kappa is a statistical metric that 

considers the agreement between the predicted 

segmentation and the ground truth while also 

considering the agreement that might occur by 

chance. Equations 1 to 6 represent the mathematical 

formulation for six evaluation metrics. 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
   (1) 

 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (2) 

 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (3) 

 

F1-score = 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (4) 

 

MIoU = 
1

𝐾
∑

𝑃∩𝐺

𝑃∪𝐺

𝐾
𝑖=1    (5) 

 

Kappa = 
𝑃0−𝑃𝑒  

1−𝑝𝑒
    (6) 

 

where, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 stand for true positive 

(accurately predicted building pixels), true negative 

(correctly predicted non-building pixels), false 

positive (incorrectly predicted building pixels that 

are not), and false negative (missed non-building 

pixels), respectively. 𝐾 represents the number of 

classes, which is 2 in this study. 𝑃 refers to the 

predicted buildings, while G represents the ground 

truth 𝑃0 indicates the proportion of observed 

agreement (Accuracy), and 𝑃𝑒   depicts the 

proportion of agreement expected by chance. All the 

metrics, except kappa, have values ranging from 0 

to 1, where 0 indicates the poorest prediction, and 

1 represents the best prediction performance. Kappa 

has values ranging from -1 to 1, where -1 indicates 

no agreement, 0 indicates agreement by chance, and 

1 indicates perfect agreement 

 

4 Experimental Results 
 

4.1 Dataset Preparation and Postprocessing 
 

The RGB image tiles and their corresponding binary 

masks (5045 images and 5045 masks) were 

randomly divided into training (80%) and validation 

(20%) datasets. The purpose of the training dataset 

is to provide the model with the necessary 

information and visual properties of the buildings. 

The validation data, on the hand, aids in verifying 

and improving the model’s performance during 

training. Data augmentation was performed on the 

training dataset to obtain 12000 images and 12000 

masks. 

 

The testing images were purposely chosen to have 

dimensions of 5000 ×  5000 pixels, primarily to 

match the computer’s processing capabilities. This 

image dimension was carefully selected to ensure 

the computational resources could handle the size 

effectively. Similarly, the verification images were 

initially divided into tiles with dimensions of 

5000 ×  5000 pixels each before applying the 

proposed models. The models were then used to 

predict building locations on each tile, resulting in 

binary images representing the presence or absence 

of buildings in each tile. 

 

After the prediction phase, the postprocessing steps 

involved combining the predicted binary images 

from the tiles to reconstruct the complete image. A 

retiling process was applied to assemble the 

individual tiles into the original image dimension, 

and an image-to-image georeferencing technique 

was employed to align the retiled images with their 

corresponding orthomosaics. This georeferencing 

step ensures that the predicted binary images are 

accurately positioned and have appropriate 

geographic coordinates. 

 

Once the images were georeferenced, they were 

further processed to obtain vector layers 

representing the building outlines. This raster-to-

vector conversion allowed for the extraction of 

precise building boundaries. During this conversion, 

a simplification algorithm was applied to enhance 

the regularity of the building outlines, ensuring 

smoother and more coherent representations. The 

ultimate goal of these postprocessing steps was to 

obtain accurate and well-defined building outlines 

from the initial binary predictions. 

 



21                                     GJT  Vol. 7, No. 2, September, 2023 

4.2 Experimental Design 
 

The experimental setup used Python programming 

language and open-source libraries, including 

TensorFlow, OpenCV, NumPy, and Segmentation 

Models. The overall flow for conducting the 

experiments for the proposed models was in three 

phases: model development and training, model 

testing, and verification. These phases were 

conducted on a Windows operating system, 

leveraging the computational power of a GeForce 

RTX 2060 GPU equipped with 16 GB of RAM. 

During the training process, a data generator with a 

batch size of 16 was employed to efficiently read 

and process the images and their corresponding 

masks from the training and validation datasets. 

These datasets were subsequently fed into the U-Net 

and UResNet-34 models for further analysis and 

performance evaluation. During the training of the 

proposed models, model checkpointing and early 

stopping were utilised. Model checkpointing 

enables saving the model’s weights at certain 

intervals during training. Thus, the model can later 

be restored from the point of best performance and 

can be helpful to prevent data loss and resume 

training if the process is interrupted. Early stopping 

works by monitoring a validation metric, in this 

study, was the mIoU, and stopping the training 

process early if the mIoU for the validation set stops 

improving. This step helps prevent overfitting and 

saves computational resources. The training details 

for the U-Net and UResNet-34 are depicted in Table 

2. 
 

Table 2 Training Details for Proposed DNN Models 
 

Detail 
Models 

U-Net UResNet-34 

Total training time 105 mins 98 mins 

Number of epochs 50 39 

Batch size 16 16 

Loss function Binary cross entropy Categorical focal jaccard loss 

Optimiser Adam Adam 

Input image size 256 × 256 RGB images 256 × 256 RGB images 

Input mask size 256 × 256 RGB binary images 256 × 256 RGB binary images 

Output image size 256 × 256 building mask 256 × 256 building mask 

Training images 12000 12000 

Validation images 1009 1009 

 

4.3 Quantitative Assessment 
 

Table 3 presents the results achieved by the U-Net 

and UResNet-34 for the four localities based on a 

quantitative assessment using the evaluation 

metrics. The results revealed stimulating insights 

into their segmentation capabilities. For L1, 

UResNet-34 demonstrated superiority over the U-

Net model across various metrics. With an accuracy 

of 0.8712, UResNet-34 exhibited a higher ability to 

classify pixels than U-Net (0.7432) correctly. For 

precision, U-Net and UResNet-34 achieved similar 

and impressive scores of 0.9882 and 0.9881, 

respectively, indicating proficiency in making 

accurate positive predictions. The recall value of 

0.6806 for UResNet-34 showed its capability to 

identify a more significant portion of the actual 

positive pixels, while U-Net’s recall was 0.5136. 

The F1-score (0.8061), which balances precision 

and recall, and mIoU (0.7496), which indicates a 

better overall segmentation, for UResNet-34 were 

significantly higher compared to the F1-score 

(0.6759) and mIoU (0.5799) of U-Net. However, for 

Kappa, U-Net attained a superior value of 0.9244 

compared to the 0.8855 attained by UResNet-34 in 

this test area. This score indicates that the U-Net 

model predictions agreed better with the ground 

truth data than that of UResNet-34. 

 

Table 3 Quantitative Performance of DNN 

Models on L1 
 

Test 

Area 
Metric 

Model 

U-Net UResNet-34 

L1 

Accuracy 0.7432 0.8712 

Precision 0.9881 0.9882 

Recall 0.5136 0.6806 

F1-score 0.6759 0.8061 

mIoU 0.5799 0.7496 

Kappa 0.9244 0.8855 
 

For L2, UResNet-34 continued to outperform the U-

Net model in specific metrics. It achieved a higher 

accuracy of 0.9010 compared to U-Net’s 0.8192. 

However, U-Net exhibited a slightly better precision 

(0.7208) than UResNet-34 (0.6474). Remarkably, 

UResNet-34 excelled in recall, with a value of 

0.7864, indicating its ability to identify a more 

significant proportion of actual positive pixels, 

while U-Net’s recall was 0.5009. The F1-score was 

marginally higher for UResNet-34 (0.7363) 

compared to U-Net (0.5911), reflecting a better 

balance between precision and recall for UResNet-
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34. The 0.7223 mIoU score attained by UResNet-34 

was higher than that of U-Net (0.6058). U-Net 

showed a better kappa value (0.8667) than 

UResNet-34 (0.8495) in Test Area L2. This value 

indicates that U-Net’s predicted masks agreed more 

with this area’s ground truth. 

 

Table 4 Quantitative Performance of DNN 

Models on L2 
 

 

Test 

Area 
Metric 

Model 

U-Net UResNet-34 

L2 

Accuracy 0.8192 0.9010 

Precision 0.7208 0.6474 

Recall 0.5009 0.7864 

F1-score 0.5911 0.7363 

mIoU 0.6058 0.7223 

Kappa 0.8667 0.8495 
 

In L3, UResNet-34 achieved remarkable results, 

excelling in various metrics. It achieved a high 

accuracy of 0.9786, significantly surpassing U-Net’s 

accuracy of 0.9269. UResNet-34 also demonstrated 

higher precision (0.9285) and recall (0.5937) 

compared to U-Net’s precision (0.9059) and recall 

(0.2810). The F1-score for UResNet-34 (0.7243) 

was higher, reflecting its ability to balance precision 

and recall. Moreover, UResNet-34 showed excellent 

performance in mIoU (0.7695) compared to the 

0.7695 of U-Net. In this test area, U-Net beat 

UResNet-34 in terms of kappa value by attaining a 

score of 0.9020, surpassing the 0.8857 attained by 

UResNet-34. 

 

Table 5 Quantitative Performance of DNN 

Models on L3 
 

Test 

Area 
Metric 

Model 

U-Net UResNet-34 

L3 

Accuracy 0.9269 0.9786 

Precision 0.9059 0.9285 

Recall 0.2810 0.5937 

F1-score 0.4290 0.7243 

mIoU 0.5909 0.7695 

Kappa 0.9020 0.8857 
 

In L4, UResNet-34 maintained its strong 

performance, achieving an accuracy of 0.9220, 

higher than U-Net’s 0.8949. Both models displayed 

similar precision values, but UResNet-34 

showcased a higher recall of 0.8093 than U-Net’s 

recall of 0.7518. The F1-score for UResNet-34 

(0.8639) was also higher, indicating its ability to 

balance precision and recall. The mIoU (0.8284) 

value of UResNet-34 also surpassed the mIoU 

(0.7793) obtained by UNet. U-Net continued 

outperforming UResNet-34 regarding the kappa 

value (0.9020 vs. 0.8857).  

 

Table 6 Quantitative Performance of DNN 

Models on L4 
 

Test 

Area 
Metric 

Model 

U-Net UResNet-

34 

L4 

Accuracy 0.8949 0.9220 

Precision 0.9058 0.9265 

Recall 0.7518 0.8093 

F1-score 0.8216 0.8639 

mIoU 0.7793 0.8284 

Kappa 0.9020 0.8857 
 

4.4 Qualitative Assessment 
 

As illustrated in Fig. 6, the qualitative assessment of 

the U-Net and UResNet-34 models for localities 1 to 

4 reveals valuable insights into their segmentation 

performance. In Test Area 1, both models show 

promising results, with U-Net achieving slightly 

higher accuracy in building segmentation despite 

some minor false positives. UResNet-34, however, 

segmented a portion of the road as a building, as 

indicated by the red markings. In L2, both U-Net and 

UResNet-34 struggled to identify buildings 

accurately in the areas with informal settlements. 

The qualitative evaluation of the models in L3, 

characterised by sparse buildings and dense 

vegetation, shows a remarkable performance for 

both U-Net and UResNet-34. Although the 

buildings had roofs with similar textures to the 

vegetation, the vegetation was not segmented as 

buildings or buildings mistaken for vegetation. The 

models exhibit similar performance for L4. 

Although there were false positives, most of the 

buildings were accurately segmented/ Overall, the 

U-Net and UResNet-34 models demonstrate 

promising performance in building segmentation, 

with each model excelling in all contexts. 
 

 
Fig. 6 Performance of DNN on Test Localities (a) 

Orthomosaics (b) Masks (c) U-Net 

Predictions (d) UResNet-34 Predictions 
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4.5 Verification Study 
 

The study area chosen for this stage was the 

Abnabna community, covering an approximate area 

of 82.92 hectares. Data was collected using a P4P 

UAV, and the entire process took about twenty-two 

(22) minutes. The collected images were then 

processed using Agisoft Metashape to generate the 

orthomosaic. 

For obtaining segmentation masks of the area, both 

U-Net and UResNet-34 models were employed; 

however, only one was chosen due to the similarity 

between the results masks. The selected mask was 

further tiled, georeferenced, and converted into a 

shapefile representing the building’s outlines. Fig. 7 

illustrates the orthomosaic, georeferenced mask, 

building shapefile, and building shapefile 

superimposed on the orthomosaic.
 

 
Fig. 7 DNN Models Verification Results (a) Orthomosaic (b) Tiled Mask (c) Building Outlines (d) 

Superimposition of Building Outlines and Orthomosaic 

 
 

4.6 Discussion 
 

The quantitative assessment demonstrated the 

effectiveness of U-Net and UResNet-34 in building 

extraction from UAV orthomosaics. In all test areas, 

u-Net achieved competitive performance with 

respectable accuracy, precision, F1-score, and mIoU 

values. On the other hand, UResNet-34 exhibited 

even higher values for these metrics, outperforming 

U-Net in most cases. The higher recall and F1-score 

values for UResNet-34 suggest its proficiency in 

identifying buildings accurately while maintaining a 

good balance between precision and recall. 

However, the kappa values present a different 

perspective. U-Net consistently achieved higher 

kappa values across all test areas, indicating better 

agreement and accuracy in its predictions than 

UResNet-34. The kappa metric considers the 

agreement by chance, making it a robust measure of 

model performance. U-Net’s ability to maintain a 

higher level of agreement with the ground truth data 

implies its overall consistency and reliability in 

building segmentation tasks. 

 

The qualitative evaluation revealed the effectiveness 

of U-Net and UResNet-34 architectures in 

accurately segmenting buildings from the UAV 

orthomosaics. While there were occasional false 

positive predictions, the models demonstrated 

remarkable proficiency in identifying and extracting 

most buildings within the images. However, in the 

case of the slum locality, L2, the models 

encountered challenges in distinguishing adjacent 

buildings with overlapping roofs or those situated in 

close proximity. Additionally, the UResNet-34 

model exhibited difficulties in areas where the road 

textures resembled those of the buildings’ roofs. 

 

Considering the training times, U-Net and UResNet-

34 exhibited relatively shorter durations of 105 

minutes and 98 minutes, respectively. The models’ 

training times are reasonable and feasible, making 

them suitable for various practical applications. U-

Net and UResNet-34 balance training efficiency and 

performance, making them attractive for building 

extraction tasks in remote sensing and geodetic 

applications. 

 

4.7 Research Implication 
 

This study’s findings have significant implications 

for remote sensing, geospatial analysis, and urban 

planning, providing valuable insights into deep 

learning models’ application in building extraction 

from UAV orthomosaics. U-Net and UResNet-34 

demonstrate potential in automating building 

identification and segmentation, benefiting various 

real-world applications. They enhance building 

extraction accuracy, supporting urban planning and 

development projects with reliable building 

footprints and better land use management. 

Additionally, these models streamline the process, 

reducing manual effort and time in data processing 

and analysis. 

 

Beyond urban planning, the research contributes to 

various geospatial applications like land cover 

classification and change detection while improving 

environmental monitoring, natural resource 

management, and infrastructure assessment 

efficiency. In disaster management, accurate 
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building extraction aids prompt response efforts, 

assessing affected areas during disasters for targeted 

responses. 

 

Furthermore, automation gains importance in 

geospatial applications, as deep learning models like 

U-Net and UResNet-34 can automate tasks, 

reducing reliance on manual processes. This shift 

improves scalability and data analysis efficiency. 

The research also advances deep-learning 

methodologies in remote sensing, providing insights 

into U-Net and UResNet-34’s strengths and 

weaknesses and guiding their application for 

specific tasks. 

 

5 Conclusions 
 

In this research, a comprehensive investigation was 

conducted to ascertain the performance of U-Net 

and UResNet-34 models for building extraction 

from UAV orthomosaics. The experimental results 

demonstrated that both models achieved promising 

outcomes, with UResNet-34 exhibiting superior 

performance in various evaluation metrics, 

including accuracy, precision, recall, F1-score, 

mIoU, and kappa. Deep-learning models, 

particularly U-Net and UResNet-34, showcased 

their effectiveness in automating the building 

extraction process, leading to more accurate and 

precise building footprints. These findings have 

significant implications for various applications, 

including urban planning, disaster management, 

environmental monitoring, and infrastructure 

assessment. The automation of building extraction 

streamlines the data processing workflow, reducing 

manual effort and time and facilitating data-driven 

decision-making for better land use management 

and sustainable urban development. While U-Net 

and UResNet-34 demonstrated commendable 

performance, it is essential to highlight certain 

weaknesses. One of the challenges observed was the 

limited performance in slum areas, where the 

buildings had overlapping roofs. Additionally, the 

models faced difficulties in accurately identifying 

buildings in areas with irregular building patterns or 

the presence of shadows and occlusions. These 

limitations suggest that further research is necessary 

to enhance the models’ ability to handle diverse and 

complex building scenarios. 

 

Future research directions will focus on addressing 

the limitations of the models by exploring advanced 

architectural modifications and data augmentation 

techniques. Incorporating attention mechanisms or 

multi-scale fusion methods could help improve the 

models’ capability to effectively capture fine details 

in densely vegetated areas and handle occlusions. 

Additionally, the integration of contextual 

information and auxiliary data sources, such as 

LiDAR or hyperspectral data, will be explored. 

These data sources could enhance the models’ 

performance in challenging environments. 
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