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Abstract 

Land use and land cover mapping is a critical process in effective land management, providing valuable insights into the spatial 

distribution and characteristics of different land uses and covers within a region. With the advancements in geospatial 

technology and the accessibility to high-resolution satellite imagery, various classification algorithms have emerged as 

powerful tools for mapping and analysing land cover patterns. The selection of a specific classification algorithm significantly 

influences the accuracy and reliability of the obtained results, thereby impacting the effectiveness of decision-making based 

on the classification outcomes. Aside the traditional classification techniques such as maximum likelihood, minimum distance 

and the parallelepiped classification algorithms, various machine learning methods have emerged for image classification. 

Machine learning techniques offer valuable advantages due to their capacity to learn from data, adapt to new datasets, and 

achieve good generalisation performance. This paper conducted a comparative study of four classification algorithms: Support 

Vector Machine (SVM), Random Forest (RF), K- Nearest Neighbour (KNN) and the Maximum Likelihood Classifier (MLC). 

A comprehensive dataset comprising of a high-resolution multispectral satellite imagery and ground truth data was employed. 

The study area is a representative of diverse land cover types including settlement, vegetation, forested, water and bare lands. 

The accuracy metrics obtained showed that the SVM obtained the best classification performance achieving a precision of 

0.84, a recall of 0.82, an F1-Score of 0.83 and an overall accuracy of 0.8932. 
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1 Introduction 

 

Effective land management heavily relies on the 

knowledge of land use trend, providing crucial 

insights into the distribution and characteristics of 

different land types within a region. The 

advancement of geospatial technology and the 

accessibility of high-resolution satellite imagery 

have given rise to diverse classification algorithms 

that serve as potent tools for analysing and mapping 

land cover patterns. The choice of a suitable 

classification algorithm profoundly influences the 

accuracy and dependability of the outcomes, thereby 

influencing the effectiveness of decision-making 

based on the classification results (Rodriguez-

Galiano et al., 2012; Noi et al., 2017). 

 

In recent years, pixel-based image classification has 

gained popularity due to its inherent strength to 

exploit the wealth of spectral information contained 

within each pixel to assign the pixels to a specific 

land cover class. Pixel-based approaches offer a 

robust means of leveraging multispectral data to 

differentiate between the various land cover classes 

that comprise the urban landscape. The 

classification process of pixel-based methods 

typically involves data preprocessing, where 

multispectral satellite imagery is calibrated and 

radiometrically and atmospherically corrected to 

ensure data consistency and accuracy. Subsequently, 

feature extraction is performed to derive relevant 

spectral, textural, and contextual information from 

each pixel. Lastly, a classification algorithm is then 

applied to the extracted features to classify each 

pixel into predefined land cover classes (Tassi et al., 

2021). 

 

Conventional approaches utilised statistical 

techniques, such as ISO-cluster and Maximum 

Likelihood Classification (MLC), for the 

classification step. These techniques assume that 

pixel values’ statistical properties differ among land 

cover classes and perform classification based on 

probability distributions. Regardless, while 

statistical approaches can offer insights into the 

distribution of land cover classes within an area of 

interest, these techniques lack adaptability and 

flexibility and rely on statistical parameters derived 

from the training data and the assumption that pixel 

values follow specific probability distributions 

(Rodriguez-Galiano et al., 2012). To overcome the 

limitations of the statistical approach, researchers 

have proposed using machine learning (ML) 

algorithms for the classification stage. In contrast to 

statistic approaches, machine learning algorithms 

can autonomously learn complex patterns from 

categorised training data and subsequently apply 
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knowledge to classify new data, making them 

invaluable for urban land cover mapping. 

 

Moreover, ML algorithms can effectively capture 

complex relationships between spectral signatures 

and land cover types, adapt to varying urban 

landscapes, and generalise well to diverse regions. 

Despite the strengths of machine learning 

algorithms, many machine learning algorithms exist, 

each having its strengths and limitations (Talukdar 

et al., 2020). For example, Support Vector Machine 

(SVM) is known for its ability to handle non-linear 

data and effectively separate classes in high-

dimensional feature spaces. Random Forest (RF), an 

ensemble method, can handle large datasets and 

reduce overfitting. K-Nearest Neighbour (KNN), a 

non-parametric and lazy learning algorithm, is 

simple and robust for classification tasks. Given the 

abovementioned reason, it has become necessary to 

identify the most effective and accurate tools for 

land cover mapping. 

 

In this paper utilised a comprehensive dataset 

comprising high-resolution multispectral satellite 

imagery and ground truth data to compare the 

classification algorithms. The study area represents 

diverse land cover types: settlement, vegetation, 

forested areas, water bodies, and bare lands. This 

research aims to evaluate and compare the 

performance of SVM, RF, and KNN in urban land 

cover classification and highlight the strengths and 

weaknesses of each algorithm. 

 

1.1 Review of Related Works 
 

This section reviews relevant literature on 

multispectral satellite imagery that considers pixel-

based image classification techniques. Land Use and 

Land Cover (LULC) monitoring is a crucial aspect 

of environmental analysis, and machine learning 

(ML) models have emerged as leading analytical 

techniques for this purpose. A search on Google 

Scholar and Science Direct webpages using 

keywords such as land cover and land cover 

classification using machine learning was used to 

gather works related to the study. To narrow the 

selection works utilising only machine learning 

approaches between 2011 and 2023 were 

considered.  

The considered works revealed that various ML 

algorithms, such as K-Nearest Neighbour (KNN), 

Support Vector Machines (SVM), Artificial Neural 

Networks (ANN), and Random Forests (RF), have 

been applied to classify LULC types and satisfactory 

results were achieved. Nevertheless, it is noteworthy 

that the extensive application of these machine 

learning models in African tropical regions has been 

somewhat limited. This limitation primarily arises 

from methodological complexities associated with 

their implementation when working with coarse-

resolution satellite imagery. 

For instance, Rodrigues-Galiano et al. (2011) 

applied the RF model to classify land cover using 

Landsat-5 Thematic Mapper data. The results 

showed that the RF model was an efficient land 

cover classifications model, achieving an accuracy 

of 92% and a Kappa index of 0.92. RF demonstrated 

superiority to data reduction and noise, making it a 

reliable method for complex land cover areas.  

 

Deilmei et al. (2014) in compared two different 

classifiers, the MLC and the SVM, for classifying 

land cover types in Malaysia based on multispectral 

data. The results obtained from the study revealed 

that the SVM classifier was more accurate, making 

it a suitable choice for land cover classification. The 

research focused on five land cover classes: forest, 

oil palm, urban area, water, and rubber. 

 

In research by Noi and Kappas (2017), the 

performances of RF, KNN, and SVM classifiers for 

land use/cover classification were assessed using 

Sentinel-2 image data. Despite the few training 

dataset that was used, the SVM classifier achieved 

the highest overall accuracy showing less sensitivity 

to training sample sizes, surpassing both the RF and 

KNN. However, when the training sample size was 

large enough, all three classifiers exhibited high 

levels of accuracy in land use/cover classification 

tasks. 

 

Alkaradaghi et al. (2019) analysed the land use and 

cover change in the Sulaimaniyah Governorate of 

Iraq from 2001 to 2017 using Landsat imagery. In 

order to ascertain the change, the authors exploited 

MLC and SVM in accurately extracting land cover 

information. The results indicated an immense shift 

in urban areas, with a massive growth in urban land 

and a decline in agricultural land.  

 

An algorithm based on the RF classifier was applied 

by Amini et al. (2022) to analyse land use/cover 

changes using Landsat time-series data. The 

proposed method achieved high accuracy compared 

to the Copernicus Global Land Cover Layers 

(CGLCL) map for the study area, demonstrating its 

potential for LULC mapping. 

 

Yuh et al. (2022) conducted research which 

compared four machine learning algorithms. The 

algorithms compared included KNN, SVM, ANN 

and RF. In their research, they employed Landsat 7 

ETM+ and Landsat 8 OLI images. The results 

obtained showed that, the Random Forest achieved 

the highest accuracy. The results also quantified the 

amount of change that had occurred in the forested 

areas in a span of twenty (20) years 

 

Research conducted by Atef et al. (2023) studied the 

spatio-temporal land use variations in El-Fayoum. 

Their research focused on investigating the 

performance of the MLC algorithm and two 
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machine learning classifiers (RF and SVM) for 

image classification. After their investigative study, 

the results indicated that the SVM technique 

produced the most accurate maps compared to MLC 

and RF. 

 

Generally, machine learning classifiers, have shown 

promise for accurate land use and land cover 

mapping in various geographical regions, and their 

implementation can significantly aid decision-

making processes for environmental management, 

urban planning, and conservation efforts. However, 

further research is needed to explore and optimize 

the application of these classifiers for different 

environmental contexts and data resolutions. While 

various studies have applied different machine 

learning algorithms for classification tasks, only a 

few research works have considered a comparative 

analysis of the performances of the most common 

classification algorithms. This paper will, therefore, 

consider three of these classifiers and assess their 

performance for pixel-based image classification 

tasks. 

 

2 Resources and Methods Used 
 

2.1 Dataset and Methods 
 

The dataset adopted in this study was a 30-m 

LANDSAT multispectral image of path 196/row 

054, depicted in Fig. 1, obtained from the USGS 

website (https://earthexplorer.usgs.gov). In the 

criteria used, images with less than 10% cloud cover 

were selected for the study. The dataset, initially in 

the raster tiff format, was converted into the array 

format for easy processing. The Support Vector 

Machine, Random Forest, K-Nearest Neighbour 

machine learning models, and the Maximum 

Likelihood Classification statistical model, used for 

comparative assessment, were developed and used 

to classify the dataset. Before developing the 

classification models, the dataset was pre-processed 

in the Python environment to render it in a format 

that could be easily implemented in the models. 

Various open-source Python libraries were used for 

this process. Five assessment metrics were used to 

evaluate the models’ classification performance: 

Precision, Recall, F1-score, Kappa and Overall 

Accuracy. The methodology used in carrying out 

this study is summarised in Fig. 2. 
 

 
 

Fig. 1 Footprints of the Satellite Image on Path 

196 Row 054 

 
 

Fig 2 Flowchart of Methodology 

 

2.2 Study Area 
 

The Greater Accra Region, which houses Accra, the 

capital city of Gha Ghana, is one of Ghana’s most 

rapidly urbanizing regions. The Region serves as the 

capital hub of the country and houses the country’s 

most prominent seaport and international airport, 

making it an important international gateway. The 

region has attracted many investors, resulting in an 

influx of immigrants, primarily searching for 

greener pastures. This influx of immigrants has 

resulted in the need for space, mainly for settlement, 

thus resulting in the rapid change in the land cover 

and land use of the area. The land cover of the study 

area is a heterogeneous mix of natural and man-

made features, including water bodies, vegetation, 

bare lands, and built-up areas. For the training and 

testing of the model, 2 440 ground truth points were 

randomly picked using the Google Earth Pro 

software. The sample points were split into training 

and test datasets in the 0.8: 0.2 ratio. Fig. 3 shows 

the map of the study area. 
 

 
 

Fig. 3 Study Area 

https://earthexplorer.usgs.gov/
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2.3 Methods 
 

This section elaborates on the various methods 

employed in the study. The methods used included 

three machine learning classification algorithms: 

Support Vector Machine, Random Forest, and K- 

Nearest Neighbour. 

 

2.3.1 Support Vector Machine 

 

The Support Vector Machine (SVM) is a machine 

learning model that is suitable for both classification 

and regression problems. Developed by Vapnik et 

al. in the 1990s, it was used to solve binary 

classification problems. However, the basic idea 

behind the SVM is to construct a line, also known as 

a hyperplane, that perfectly separates the various 

classes of data in a dataset. In the SVM algorithm, 

the data points that are nearest to the decision 

boundary are known as the support vectors, and the 

distance from the support vectors to the decision 

boundary is referred to as the margin. The main 

objective of the SVM, is to find the optimal 

hyperplane with the maximum margin. The concept 

of the hyperplane is indicated in Fig. 4. The 

hyperplane can be defined as shown in Equation (1): 

 

𝑓(𝑥) = 𝜔𝑇𝛷(𝑥) + 𝑏                               (1) 

 

where 𝜔 is the weight vector dimensional space, b is 

the bias term, and 𝛷(𝑥) is a function that maps the 

input space into a high-dimensional space. In order 

to find the optimal hyperplane, the SVM becomes a 

convex quadratic programming problem, as 

indicated in Equation (2). 

 

𝑚𝑖𝑛
𝜔

{

1

2
‖𝜔‖2

  𝑦𝑖(𝑤𝑥𝑖
𝑇 + 𝑏) ≥ 1

}                               (2) 

 

However, the data may not be perfectly separable in 

real-world applications, resulting in 

misclassifications. To allow for a certain degree of 

misclassification, SVM introduces a slack variable 

‘ξᵢ’ for each data point, representing the 

classification error. The optimization problem in (2), 

therefore, becomes: 

 

𝑚𝑖𝑛
1

2
‖𝜔‖2 + 𝑐 ∑ 𝜏𝑖

𝑛

𝑖=1

                             (3) 

 

s.t 𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜏𝑖   𝑖 = 1,2, … . ,  𝑛,  𝜏𝑖 ≥ 0 

 

where 𝑐 is the regularisation parameter and 𝜏𝑖 is the 

slack variable. When the slack variables are 

introduced, the SVM becomes a soft margin 

classifier; the model can misclassify a few data 

points. The regularisation parameter, c, determines 

how much misclassification is allowed in the SVM 

problem. As the value of c is varied, the number of 

misclassifications also varies. A lower C value 

allows for more misclassification, while a higher 

value of C implies a lower misclassification. 

Although SVM is a linear classifier, real-world data 

often exhibits non-linearity, which poses a challenge 

for direct application. To address this issue, SVM 

employs the “kernel trick.” This technique maps the 

data from its original linear space to a higher-

dimensional feature space. The dataset becomes 

linearly separable through this transformation, 

allowing the algorithm to fit a decision boundary 

effectively. Kernel functions are used for this 

transformation, and the most commonly utilized 

ones include linear, sigmoid, polynomial, and radial 

basis functions. SVM can handle non-linear data and 

achieve accurate classification results by employing 

the kernel trick and suitable kernel functions. In this 

research, the radial basis function kernel was 

adopted.  

 

 
 

Fig. 4 Support Vector Machine showing the 

Hyperplane (Source: Analytics Vidhya, 

2021) 

 

2.3.2 Random Forest 

 

The Random Forest (RF) classifier is a machine 

learning technique introduced by Leo Breiman in 

2001. It is an ensemble learning method that 

leverages the power of multiple decision trees to 

improve the accuracy and robustness of 

classification tasks. Instead of relying on a single 

decision tree, which can be prone to overfitting or 

instability, Random Forest combines the predictions 

from multiple trees to make more reliable 

classifications. This ensemble approach helps 

reduce the risk of errors and enhances the overall 

performance of the classifier, making it a popular 

choice in various applications, including remote 

sensing image classification. It has gained 

popularity in various fields, including remote 

sensing, due to its efficiency, ability to handle large 

datasets with numerous input variables for the 

classification process (Dietterich, 2000). The RF 

algorithm creates a collection of decision trees 

through bagging, which generates subsets of the 

training data by resampling with replacement. Each 

tree is grown with a random subset of input features, 

making them diverse and less correlated. During the 
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training process, Random Forest (RF) generates an 

out-of-bag (OOB) subset, which consists of data 

points that were not utilised for training each 

individual tree within the ensemble. Subsequently, 

each tree in the RF classifier applies its classification 

to these OOB elements. The OOB error, calculated 

based on these OOB classifications, serves as an 

estimate of the classifier's generalisation error. This 

helps to assess the classifier’s ability to make 

accurate predictions on unseen data without 

overfitting (Amini et al., 2022). The selection of the 

best split at each node is based on the Gini Index, 

which measures the impurity of elements 

concerning the class distribution (Rodriguez-

Galiano et al., 2012). The RF does not prune the 

trees, making them computationally lighter and 

allowing them to grow to their maximum depth. 

The RF algorithm also calculates the Variable 

Importance (VI) to know how each input variable 

can affect the overall prediction accuracy. The lower 

the accuracy, the less critical the variable is for the 

classification (Amini et al., 2022). 

 

2.3.3 K- Nearest Neighbour 

 

The K-nearest neighbour (KNN) is a supervised 

classification algorithm that categorizes a data point 

based on the classes of its neighbouring data points. 

The performance of KNN is highly influenced by 

factors like the distance measure, weighting 

function, and the number of nearest neighbours (K) 

used in the analysis. The algorithm computes the 

Euclidean distance between the new data point and 

its neighbours, which can be mathematically 

expressed as: 

 

𝑑(𝑝, 𝑞) = 𝑑(𝑞, 𝑝) 

 

= √(𝑞1 − 𝑝1
2) + (𝑞2 − 𝑝2

2) + ⋯ + (𝑞𝑛 − 𝑞𝑛
2) 

 

where 𝑑(𝑞, 𝑝) is the distance between data point 𝑞 

and 𝑝. 

 

The choice of K is crucial and has significant impact 

on the model’s accuracy. A low K value may 

introduce lot of noise, while a high K value might 

lead to underfitting. To determine the appropriate K, 

the algorithm calculates the similarity measure 

between the features of the test dataset and the 

training dataset features. Then, it ranks the class 

labels based on the frequency of their occurrence in 

the K nearest training samples, with the most 

frequent label assigned as the class label for the test 

sample. 
 

2.3.4 Maximum Likelihood Classification 

 

The Maximum Likelihood Classification (MLC), is 

a supervised method of classification method that is 

usually employed in remote sensing and image 

processing. This classification method is based on 

the idea that the statistical properties of each class 

within each spectral band exhibit a normal 

distribution. This method computes the probability 

of a given pixel belonging to a particular class. It 

does so for all pixels in the image, providing 

classifications for each one. In this process, every 

pixel is assigned to the class for which it has the 

highest probability, representing the maximum 

likelihood outcome (Medina and Atehortua, 2019). 

It is derived from the Bayes Theorem which 

describes the likelihood of a given feature belonging 

to a particular class using prior information. This 

theorem is represented mathematically as shown in 

equation 5. 

 

  𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)⋅(𝑃|𝐴)

𝑃(𝐵)
                                              (5) 

 

where 𝑃(𝐴|𝐵) is the probability of event A 

occurring given that event B has occurred, 𝑃(𝐵|𝐴) 

is the conditional probability of event B occurring 

given that event A has occurred. (𝑃|𝐴) is the prior 

probability of event A occurring. 𝑃(𝐵) is the 

independent probability of event B occurring 

(Bayes, 1764). 

 

2.3.5 Accuracy Assessment 

 

To evaluate the performance of the developed 

models, five key metrics were employed: recall, 

precision, F1-score, Kappa and Overall accuracy. 

Recall measures how well a model can distinguish 

between all of the real positive examples. It is 

determined using Equation 6 which is the ratio of 

true positives to all positive events. High recall 

values show that the model successfully detects 

positive cases, reducing the number of positive 

occurrences that are missed (false negatives). 

Precision, on the other hand, evaluates the accuracy 

of the model's positive predictions. It is determined 

by the ratio of true positives to the total number of 

instances predicted as positive (Equation 7). High 

precision values signify that when the model 

predicts a positive case, it is more likely to be 

correct, and false positives are minimized. 

The F1 score, represented by Equation 8, serves as a 

balanced measure by considering both false 

positives and false negatives. It is the harmonic 

mean of recall and precision and provides an overall 

assessment of the model's accuracy in predicting 

positive class instances. The F1 score reaches its 

optimal value at 1, indicating perfect precision and 

recall, and descends to 0 as performance 

deteriorates. Kappa is the ratio of the observed 

agreement (the proportion of agreement between the 

two raters beyond what would be expected by 

chance) to the maximum possible agreement.  

 
When kappa is 1, there is complete agreement. 

Kappa numbers closer to 0 reflect agreement that is
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no better than what would be predicted by chance, 

and values less than 1 indicate less than perfect agr

eement.  

 

If kappa is negative, it implies that there is systema

tic disagreement and less agreement than would be 

predicted by chance. Lastly, Overall accuracy is a 

metric employed to gauge the classification model's 

performance. It signifies the proportion of correctly 

classified samples (pixels or instances) relative to 

the total number of samples. Essentially, it measures 

the model's ability to accurately predict the correct 

class labels. 

 

It is represented as shown in Equation (10). 

 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (6) 

 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (7) 

 

F1-score = 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (8) 

 

Kappa = (Pobs - Pexp) / (1 - Pexp)   (9) 

 

Overall Accuracy =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100 

     (10) 

where 𝑇𝑃 is the True Positives, 𝑇𝑁 is the True 

Negative, 𝐹𝑃 are the false positives, and 𝐹𝑁  are the 

false negatives. Pobs represents the observed 

proportion of agreement and Pexp represents 

Expected Proportion of Agreement 

 

3 Results and Discussion 
 

3.1 Data Processing 
 

The training samples generated from Google Earth 

were subsequently transformed into shapefiles. In 

total, a set of 2,440 points was carefully selected, as 

depicted in Figs 5 and 6. Using the extract values to 

point tool in QGIS, the pixel values corresponding 

to various spectral bands were extracted to the 

training sample for analysis. A sample of the 

extracted band information is depicted in Fig. 7. 
 

 
Fig. 5 Training Samples Generated in Google 

Earth
 

 
Fig.6 Training Samples Converted to Shapefiles 

 

 
Fig. 7 A Section of the Sampled Raster Values of the Training Samples

3.2 Model Formulation 
 

The implementation of the models was carried out 

using the Python programming language. The 
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models were trained, fitted, and tested. The 

significant libraries used included the GDAL, 

Numpy, Matplotlib, and Scikit-learn libraries, 

among others. The hyperparameters for each model 

were also defined. 

 

3.3 Model Performance Evaluation 

 

The performance of the models was evaluated using 

the accuracy metrics. Table 1 presents the 

performance metrics of four different classifiers, 

namely Support Vector Machine (SVM), Random 

Forest (RF), K-Nearest Neighbours (KNN), and 

Maximum Likelihood Classifier (MLC), for pixel-

based image classification. Based on the table, it is 

evident that SVM and RF have the highest precision 

values of 0.84, indicating that they make accurate 

positive predictions for the respective classes. In 

terms of recall. SVM obtained the highest value of 

0.82, indicating that it can efficiently classify more 

positive instances than the other classifiers. The F1-

score, the harmonic mean of precision and recall, 

provides a balanced measure of the classifier’s 

performance. It is also seen that SVM has the highest 

F1-score of 0.83, indicating a well-balanced 

performance in terms of precision and recall, 

followed by RF with a value of 0.79, MLC with a 

value of 0.75, and KNN obtaining the lowest value 

of 0.74. The SVM achieved the highest overall 

accuracy of 0.8932 for the overall accuracy 

obtained. This result indicates the superiority of the 

SVM in correctly classifying pixels based on their 

land cover classes in the pixel-based image 

classification task.

Table 1: Performance Metrics of ML Models 

 

 

 

 

 

 

 
 

 

3.4 Visual Interpretation  
 

Graphical representations of the accuracies were 

plotted, as shown in Figs. 8, 9, and 10, to illustrate 

how the classified had performed in classifying the 

land cover classes. 

 

 
Fig. 8 Graphical Plot of Precisions Achieved per 

Class  

 

 
 

Fig 9 Graphical Plot of Recall Achieved per Class 

 
 

 
Fig. 10 Plot of F1-Score Achieved per Class 

 

3.4.1 Land Use Land Cover Maps 

 

Land Use Land Cover Maps were generated using 

SVM, RF, KNN, and MLC. It could be observed 

from the images that the three machine learning 

classifiers gave out almost similar results. The MLC, 

however, could not classify bareland, hence 

misclassified bareland as settlement. This 

performance can be seen from the graphical plots 

(Figs 8 and 9), where the MLC had a higher recall 

(ability to identify positive instances) but recorded 

the lowest precision (ability to predict positive 

instances). The various LULC images are shown in 

Figs. 11 to 14.  

Classifier Precision Recall F1-score Kappa O/A 

SVM 0.84 0.82 0.83 0.85 0.8932 

RF 0.84 0.77 0.79 0.81 0.8710 

KNN 0.78 0.79 0.74 0.82 0.8543 

MLC 0.76 0.73 0.75 0.74 0.7322 
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Fig. 11 SVM-LULC 

 

  
Fig. 12 RF-LULC 

 

 
Fig. 13 KNN- LULC 

 

Fig. 14 MLC-LULC 

4 Conclusions and Recommendations 
 

This paper assessed the performance of three 

Machine Learning Algorithms and one classical 

algorithm (SVM, RF, KNN, and MLC, respectively) 

for pixel-based image classification. The algorithms 

were trained and developed to classify a 2021 

multispectral Landsat dataset. Five accuracy metrics 

were employed to ascertain the accuracies of the 

classifiers. The accuracy metrics were Precision, 

Recall, F1-score, Kappa, and Overall Accuracy. 

 

The results showed that the SVM consistently 

showed more robustness in terms of its accuracies, 

thus outperforming the other classifiers. Despite 

achieving competitive results, the implementation of 

the model encountered certain limitations, notably 

prolonged processing times and the need for manual 

hyperparameter selection. As a direction for future 

research, it is recommended that emphasis be placed 

on optimizing the model’s performance. In this 

regard, the exploration of metaheuristic algorithms 

should be undertaken to automate the process of 

hyperparameter selection, aiming to yield more 

optimal and efficient results. These efforts will 

contribute to advancing image classification 

techniques and enhancing their applicability in 

various real-world scenarios. 
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