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Abstract 

In this paper, an intelligent Predictive Maintenance (PdM) framework with an efficient and automated selection of relevant 

and most informative features has been proposed for fault classification. This was achieved by using the hybrid of Fuzzy Set 

and Rough Set Theories as a feature selection technique for pre-processing and the selection of features that contained only 

relevant fault characteristics. The selected features were then served as input for training the Support Vector Machine (SVM) 

classifier for the classification of the condition of four major hydraulic components (accumulator, cooler, pump and valve). 

To ascertain the performance of the proposed framework, a comparative study with five different and well-established machine 

learning classifiers was evaluated using nine different performance metrics. The result from the analysis proves the versatility 

of the proposed framework in classifying the various conditions of the hydraulic components whiles reducing the 

computational cost. When compared with prior works, a significant average improvement of over 26% in test accuracy was 

obtained for both accumulator and pump conditions whiles similar results were seen for cooler and valve conditions. 
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1 Introduction 

 

One of the major challenges encountered in the field 

of computational intelligence is the selection of 

relevant and most informative features from a pool 

of knowledge that contains an optimum level of 

variability for predicting a given outcome. The 

challenge is intensified in the field of Predictive 

Maintenance (PdM) which is characterised by a high 

dimensional dataset (in the order of tens of 

thousands) generated from different process sensors 

at varying sampling rates. The usage of the high 

dimensional dataset for inferential purposes or to 

develop PdM frameworks often proves to be 

challenging. This is because the associated 

computational requirements (cost and storage) 

increase exponentially as the data size increases 

(Guha et al., 2022). Additionally, selecting a 

representative subset is practically impossible since 

there exist combinatorially many feature 

combinations. That is,  ! !( )!N n N n−  with n  

features and from a collection of  N  total features 

(Jensen and Shen, 2009). Ideally, it is acknowledged 

that the inclusion of more features for the 

development of a PdM framework is expected to 

increase the chances of providing enough 

information for distinguishing between class 

outputs. However, this assumption does not always 

hold since the inclusion of too many features may 

increase the level of uncertainties (noise), thus 

leading to spurious outcomes (Jensen and Shen, 

2009). Likewise, the usage of many or little features 

(not optimal) for the design and development of a 

PdM framework subsequently leads to low 

efficiency and high computational cost (Abdulhafiz 

and Khamis, 2013). 

 

In literature, enormous research has been directed 

towards the devising of approaches for the selection 

of a smaller subset from a pool of knowledge that is 

representative enough for a given task. This 

concerns the domain of dimension reduction which 

aims to produce a representative subset. Feature 

selection, unlike other dimensionality reduction 

techniques, preserves the underlying structure of the 

resulting feature subset. Hence, its application in 

numerous disciplines such as image processing 

(Bruzzone and Persello, 2009), text (Bharti and 

Singh, 2015), data classification (Mohapatra and 

Chakravarty, 2015; Schneider et al., 2017) among 

others.  

 

Despite the promising solution offered by feature 

selectors, recent advancements in science have led 

to the development of techniques for addressing the 

uncertainties and imprecision in data recorded for 

the development of intelligent models. Notable 

among these techniques are in the domain of Fuzzy 

Set Theory (FST) (Zadeh, 1965) and the Rough Set 

Theory (RST) (Pawlak, 2012). The FST utilises the 

concept of partial set membership which facilitate 

reasoning in an imprecise manner (Zadeh, 1965) 

thus, making FST very efficient for addressing the 

imprecision of datasets. However, FST is limited in 

application as it requires prior knowledge of 

*Manuscript received December 14, 2021 

 Revised version accepted March 18, 2022 



10                              GJT  Vol. 6, No. 2, March, 2022 

membership functions for various fuzzy sets. This 

limitation is a significant drawback in FST as any 

decision made by the user may possibly be faulty or 

based on their subjective judgement. The RST on the 

other hand utilises the internal structure 

(granularity) to exploit the facts hidden in a given 

crisp or discrete datasets (Pawlak, 2012). In 

addition, RST requires no prior knowledge for 

computation and can be used as a feature selection 

technique for finding a representative subset from a 

pool of knowledge. Hence, its successful application 

in diverse fields (Huang, 1992). However, since 

RST was originally proposed for addressing 

uncertainties in crisp or discrete datasets, it cannot 

be implemented on real-valued datasets 

characterised with uncertainties (Pawlak, 2012; Riza 

et al., 2014), which is typical in the field of 

predictive maintenance. 

 

Despite the shortfalls in both FST and RST, the two 

domains are analogous as they seek to address 

uncertainty with the only difference being the type 

of uncertainty addressed and the procedure 

involved. Therefore, exploiting or hybridising the 

strength of these domains, Fuzzy-Rough Set Feature 

Selection (FRFS) will provide a high degree of 

flexibility for addressing several data imperfections, 

intelligently extract the most informative feature 

subset in both discrete and real-valued industrial 

data characterised by uncertainties for the 

development of PdM frameworks without the need 

for user-supplied input. The resulting feature subset 

from FRFS can then serve as input for training 

supervised machine learners. 

 

To validate the proposed FRFS approach in PdM, 

this paper emphasises on a hydraulic system that 

was presented by Helwig et al. (2015a) as a test 

benchmark in the field of monitoring hydraulic 

systems. The work of Helwig et al. (2015a) 

employed the scatter-based feature extraction and 

Pearson’s correlation-based selection techniques for 

selecting the 20 most highly correlated features for 

classification. The 20 selected features were served 

as input for the classification of accumulator, cooler, 

pump and valve conditions. The work of Helwig et 

al. (2015a) was extended by Helwig et al. (2015b) 
to allow for the detection of typical faults and the 

compensation of sensor faults in the hydraulic 

system. Similar to the approach used by Helwig et 

al. (2015a), the study utilised the same feature 

extraction and selection techniques for selecting 

features for classification. To further explore the 

research area, Schneider et al. (2017) automated the 

reduction in dimension by applying four 

complimentary feature extraction methods and three 

features selection algorithms. The feature selection 

methods were Pearson’s correlation-based, the 

Recursive Feature Elimination Support Vector 

Machines (RFESVM) and the Univariate Relief 

feature selection. The approach improved the 

classification of accumulator conditions while the 

others (cooler, pump and valve) were comparatively 

similar to the results obtained by Helwig et al. 

(2015a).  

 

Along the line, Chawathe (2019) also sought to 

improve the classification accuracy of prior research 

works by investigating a trade-off between the 

number of features and accuracy. This was realised 

through the extraction of 68 features based on some 

distribution functions. The resulting set of features 

was then selected and grouped into four different 

categories based on feature-selection-free (all 68 

features), One Rule (OneR), J48 Decision Tree (DT) 

and Information gain. The four categories of 

features were then used as input for training seven 

(7) different classifiers. Although some classifiers 

resulted in higher accuracies than prior research 

works, others also performed worse. Furthermore, 

Quatrini et al. (2020) also developed a predictive 

model for the degradation of major components of 

the hydraulic system by extracting 102 relevant 

features. Using Pearson’s correlation selection 

criteria, the 102 extracted features were grouped into 

three (3) categories of inputs based on feature-

selection-free (all 102 features), 60 and 80 features. 

These categories of inputs were then used for 

training five Machine Learning (ML) classifiers. 

The approach achieved high accuracies as the 

reduction in features allowed for optimal 

combination of inputs that linearly separates the 

groups while minimising inter-group distance. 

Finally, König and Helmi (2020) predicted the 

different levels of degradation of major components 

of the hydraulic system. As opposed to the feature 

extraction and selection techniques adopted by prior 

works, the study used the deep learning technique of 

Convolutional Neural Networks (CNN). Hence, the 

developed deep learning-based condition 

monitoring system for the hydraulic system was 

achieved without explicitly engineering the features.  

Although the techniques utilised in prior works have 

resulted in satisfactory results along the line, the 

feature selection approaches such as the Pearson’s 

correlation and others adopted are subjective 

because they require some level of input from the 

user. These user inputs and decisions which are 

based on subjective judgement may be faulty, 

leading to suboptimal model specification. CNN on 

the other hand is noted to be highly expensive in 

terms of computation, thus, requires high hardware 

resources such as memory and processors. 

 

In view of the foregoing discussion, the paper 

proposes a PdM framework for the efficient 

classification of fault conditions characterised by 

uncertainties based on the features selected through 

hybrid fuzzy rough set theories. The proposed 

framework advances the field of PdM by enhancing 

the feature selection technique used for optimal 

selection of relevant and most informative features 
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from a pool of industrial datasets without the need 

for user-supplied input which is predominantly 

subjective and may lead to model inefficiencies. 

 

2 Resources and Methods Used  
 

2.1 Hydraulic System Dataset 
 

The utilisation of hydraulic systems in most 

engineering setups is very crucial due to their 

numerous industrial applications such as 

manufacturing, transportation, and machinery. With 

the recent advancement in science and today’s 

highly competitive environment, the role of 

hydraulic systems in complex and integrated 

machinery is in high demand and are generally 

operated in extreme and challenging conditions. 

These dynamic conditions expose the hydraulic 

systems to progressive deterioration which impact 

the availability and reliability states of equipment, 

increase operational and maintenance related cost 

(Sheng et al., 2011). For these reasons, a robust 

condition monitoring of hydraulic systems as a 

requirement for predictive-based maintenance is 

imperative since it can improve productivity, reduce 

the maintenance cost of industrial equipment and 

offer a significant improvement in their health 

condition. This, ultimately will increase asset 

utilisation and prevent them from deteriorating, 

considering that reliability and high safety standards 

are of paramount importance.  

 

Considering the rising demand and increasing 

complexity of industrial systems, the number of 

installed sensors and their sampling rate are 

constantly growing (Schneider et al., 2018). As 

such, the processing of high-dimensional data 

(signals) from industrial equipment to detect a fault 

or monitor the condition of a component or the entire 

system is usually not a common place for human 

operators. For instance, a fault in a single hydraulic 

component, say pump, can affect the normal 

operational performance of the entire hydraulic 

system (Chawathe, 2019; König and Helmi, 2020). 

This calls for the development of automated and 

robust frameworks capable of predicting the 

degradation states of the hydraulic system as well as 

the specific components. 

  

In this paper, emphasis is placed on a hydraulic 

system which was presented by Helwig et al. 

(2015a) as a test benchmark in the field of 

monitoring hydraulic systems. The hydraulic system 

dataset recorded from monitoring the condition of 

the hydraulic system is publicly available at the 

University of California, Irvine (UCI) Machine 

Learning repository. The dataset can be accessed via 

http://archive.ics.uci.edu/ml/datasets/Condition+mo

nitoring+of+hydraulic+systems. The hydraulic 

system dataset utilised in this paper consists of 2 205 

instances and 43 680 features recorded from 17 

process sensors with varying sampling rates. The 17 

processes comprised of six pressure sensors, four 

temperature sensors, two volume flow sensors, five 

different sensors for recording motor power, 

vibration, cooling efficiency, cooling power and 

system efficiency. A detailed discussion of the 17 

process sensors can be found at the source (Helwig 

et al., 2015a). The dataset also contains fault 

scenarios depicting the variations in fault conditions 

of four major components such as hydraulic 

accumulator, cooler, internal pump leakage and 

valve. The accumulator is designed for storing 

energy, absorbing shocks and pulsations, the cooler 

for ensuring optimal oil temperature, the pump for 

distributing fluids, and the valve for regulating the 

flow of fluids in the hydraulic system. The details of 

the four major components are shown in Table 1. 

 

2.2 Feature Engineering 
 

To develop an efficient and robust Predictive 

Maintenance (PdM) framework, one major issue 

that needs to be addressed is the dimension of 

features (i.e., 43 680 features from the 17 process 

sensors), which is relatively high. Consequently, 

conventional Machine Learning (ML) techniques 

will suffer from tractability, scalability, high time 

complexities and more importantly classification 

performance issues (Herrmann et al., 2012; Bach, 

2017). Also, feeding the dataset directly into 

conventional ML techniques fails to detect features 

that contain the most characteristic fault information 

required for the efficient classification of the fault 

conditions (Chawathe, 2019). Hence, a well-

established strategy is to extract some statistics-

based features or transforms that represent the 

characteristic properties of the hydraulic dataset 

from the 43 680 features. 

 

2.2.1 Feature Extraction 

 

Seven different statistical time-domain features such 

as the mean, median, variance, standard deviation, 

skewness, kurtosis and position of maximum were 

extracted from the hydraulic system dataset. To 

ensure uniformity, these statistical estimates were 

obtained after partitioning each sensor into various 

time intervals as follows: the six Pressure Sensor 

(PS): PS1 (13), PS2 (14), PS3 (18), PS4 (25), PS5 

(19), PS6 (19); the four Temperature Sensor (TS): 

TS1 (7), TS2 (7), TS3 (8), TS4 (15); volume Flow 

Sensor (FS): FS1 (18), FS2 (18); motor Efficiency 

Power Sensor (EPS): EPS1 (13), Vibration Sensor 

(VS) 15; Cooling Efficiency (CE) sensor 13; 

Cooling Power (CP) sensor 13; System Efficiency 

(SE) sensor 23. This resulted in a complete feature 

vector of 1 806 features.  

 

However, these 1 806 extracted features may 

contain insignificant and redundant features with 

uncertainties which when used may negatively 

http://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems
http://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems


12                              GJT  Vol. 6, No. 2, March, 2022 

affect the performance of the proposed PdM 

framework to discriminate between class output 

effectively and efficiently (Binsaeid et al., 2009). 

Hence, the Fuzzy Rough Set Feature Selection 

(FRFS) is utilised in this paper to determine the most 

optimal feature subsets that capture relevant fault 

characteristics. The FRFS technique, as opposed to 

the correlation-based feature selection technique 

adopted by prior works such as Helwig et al. (2015a) 

and Helwig et al. (2015b), does not require prior 

knowledge or the user to subjectively specify the 

number of features to select as wrong judgement 

may influence the efficacy of the model being 

developed. 

 

2.2.2 Fuzzy Rough Set Theory  

 

The fuzzy rough set theory can be thought of as a 

generalisation to the rough set theory where the 

approximation from fuzzy sets; lower and upper 

fuzzy approximations, is derived in a crisp rough set 

space. That is, fuzziness is integrated into rough sets 

by defining the lower and upper approximations of 

the set when U , the non-empty set of finite fuzzy 

sets becomes rough because of the equivalence 

relation. 

Suppose that the subsets of features from A , P A

, with equivalence relation over U  denoted as 

IND( )P , the equivalence class can be expressed as 

fuzzy sets  1 2, , , hF F F F= if the class to which 

iF  for all {1,2, , }i h  attribute are ambiguous. 

Thus, the fuzzy P - lower and P - upper 

approximations of X  are expressed as  Equations 

(1) and (2). 

( )  inf max 1 ( ), ( )
iPX i F X

x
F x x i  = −   (1) 

( )  sup min ( ), ( )
ii F XPX

x

F x x i  =   (2) 

where X  is the fuzzy concept to be approximated 

with x  denoting an item in X  and iF  being the 

fuzzy equivalence class belonging to IND( )P . The 

ordered pair ( ),PX PX  is the fuzzy rough set. 

These definitions deviate a bit from the lower and 

upper approximations under the crisp rough set due 

to the inability to explicitly access the membership 

of individual objects to the approximations. As a 

result, the fuzzy lower and upper approximations are 

redefined by employing the concept of sup  and inf  

as shown in Equations (3) and (4). 

 

( )

 ( )
/ IND( )

sup

min ( ), inf max 1 ( ), ( )

PX
F U P

F F X
y U

x

x y y



  





=

 −
  (3) 

( )

 

/ IND( )

sup

min ( ), sup min ( ), ( )

iPX
F U P

F F X
y U

F

x y y



  





=

 
  

 

  (4) 

 

It can be observed from Equations (3) and (4) that 

every y U  is taken into account with instances 

where their corresponding ( ) 0F y  .  A detailed 

discussion on the usage of the min  and max  

operators is seen in Radzikowska and Kerre (2002), 

where a comparative study of fuzzy rough sets is 

represented by specific implication and t -norm. 

 

Table 1 Details of Hydraulic Components 

Monitored Condition Unit States Class Output Cases 

Accumulator bar 

Optimal Pressure 130 599 

Slightly Reduced Pressure 115 399 

Severely Reduced Pressure 100 399 

Close to Total Failure 90 808 

Cooler % 

Full Efficiency 100 741 

Reduced Efficiency 20 732 

Close to Total Failure 3 732 

Pump - 

No Leakage 0 1221 

Weak Leakage 1 492 

Severe Leakage 2 492 

Valve % 

Optimal Switching Behaviour 100 1125 

Small Lag 90 360 

Severe Lag 80 360 

Close to Total Failure 73 360 
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2.2.2 Fuzzy Rough Set Feature Selection (FRFS) 

 

The feature selection or reduction ability of rough 

set theory is perhaps a significant factor owning to 

its successful application in diverse disciplines. This 

unique ability can be exploited in the fuzzy rough set 

via the concept of fuzzy lower approximation for 

reducing datasets of real-valued features. Referring 

to the extension principle of Zadeh (1978), the 

membership of an object x U  belongs to a fuzzy 

positive region as expressed in Equation (5). 

 

POS ( )
/ IND( )

( ) sup ( )
P Q PX

X U Q

x x 


=      (5) 

 

From Equation (5), it can be deduced that the object 

x  fails to belong to the positive region if the 

equivalence class it belongs to is not a member of 

the positive region. The fuzzy rough dependency 

degree function is expressed from the definition of 

the positive region as shown in Equation (6). 

 

POS ( ) POS ( )'
( ) ( )

( )
P P

Q Qx U

P

x x
Q

U U

 
 = =


 (6) 

 

However, for the fuzzy rough feature reduction to be 

useful in practice, it should be capable of handling 

high-dimensional datasets by means of estimating 

the dependencies of various feature subsets with the 

original dataset. This is relevant as the objects may 

belong to several equivalence classes. For instance, 

in the crisp case / IND( )U P  consist of groups of 

objects that are indiscernible based on the features 

from P . However, in the case of fuzzy, the 

cartesian product of features from P  is considered 

in estimating / IND( )U P  where each set in 

/ IND( )U P  is an equivalence class. Hence, the 

extent to which an object belongs to the equivalence 

class could be estimated using the combination of 

constituent fuzzy equivalence classes, 

, 1, 2,..,iF i n =  as shown in Equation (7). 

 

( )
1 1 2

( ) min ( ), ( ), , ( )
n nF F F F Fx x x x     =    (7) 

 

However, despite the promising results that the 

classical FRFS techniques offer in the selection of 

an optimal feature subset, it possesses some 

deficiencies that could be minimised by 

incorporating an Ordered Weighted Averaging 

(OWA) operators in the calculation of upper and 

lower approximations for increased robustness 

(Cornelis et al., 2010). 

 

FRFS Based on Ordered Weighted Average (OWA) 

 

The OWA approach to FRFS was proposed by 

Cornelis et al. (2010) and follows the principle of 

addressing sensitivity to noise and outlying samples. 

However, for the FRFS(OWA), an aggregation 

technique using OWA estimators are employed for 

estimating the lower and upper approximations as 

shown in  Equations (8) and (9) respectively. 

 

( )  ( , ), ( )
P l PR X W R Xx OW A I x y y  =  (8) 

( )  ( , ), ( )
u PP

W R XR X
x OW A T x y y  =  (9) 

where 
1

( )
n

W i i

i

OW A X w c
=

= , ic  denotes the thi  

largest value in X  and iW w=  is the weighting 

vector such that for m n  1,2, ,i n = , it is 

possible to define 
minl

l iW w W= =  and 

maxu

u iW w W= =  as Equations (10) and (11) 

respectively. 

1
1

2
, 1,2, ,

2

0 1, ,

m i

l m
n i

i m
w

i m n

−

−
+ −


=

= 
 = +

  (10) 

1

2
, 1,2, ,

2

0 1, ,

m i

u m
i

i m
w

i m n

−

−


=

= 
 = +

  (11) 

 

2.3 Support Vector Machine (SVM) 
 

The SVM is one of the commonly used supervised 

learners in the field of predictive maintenance. 

Compared to other learners, it is known for high 

classification accuracy and efficiency in obtaining 

global optimum, robust performance and more 

importantly, high overfitting avoidance capability. 

As a result, SVM is a highly preferred choice for 

various classification tasks (Di et al., 2019; Mahmud 

et al., 2017; Gao et al., 2020).  

Given a matrix ( )1 2, , , n p

nX x x x =   with a 

corresponding response vector { 1, 1}iy  − + , where 

-1 and +1 denote samples from the negative and 

positive classes respectively. In SVM computation, 

the optimal hyperplane is defined as Equation (12). 

 

( ) 0Tw x b + =    (12) 

where ( )x  represents a nonlinear mapping function 

for transforming x  to a high-dimensional space, w  

and b  are the weight vector and bias respectively. 

Thus, the objective of training SVM is to find w  

and b  such that hyperplane divides the classes into 

distinct partitions and with the largest separation of 

classes. This problem can be formulated as Equation 

(13) subject to the constraint (Equation (14)) 

, ,
1

1
min

2

n
T

i
w b

i

w w C



=

+    (13) 



14                              GJT  Vol. 6, No. 2, March, 2022 

( )( ) 1T

i i iy w w x b +  −   (14) 

where 1, 2, ,i i n  =  are slack variables. Hence, 

the hyperplane with the maximum margin for 

separating the classes is realised. However, in 

situations where the maximum margin fails in 

finding the optimal separation of the hyperplane, 

soft margins are utilised such that w  and b  satisfy 

the inequalities (Equations (15) to (17)) for all 

elements in the data. 

1i iwx b −  + −  if 1iy = +  (15) 

1i iwx b −  − +  if 1iy = −  (16) 

0      (17) 

When an error occurs, 1i   and 
ii
  become the 

upper bound on the training error which is controlled 

by the Lagrangian 
pL  shown in Equation (18). 

( )( )

2

1

1

2

1

n

p i

i

i i i i i i

i i

L w C

y x w b



   

=

= +

− − − + −



 
     (18) 

where i  is the Lagrange multipliers for estimating 

the positive values of i . 

It is important to note that, the optimal separation of 

the hyperplane is achieved via a kernel function (i.e., 

linear, radial basis, polynomial, sigmoid etc.). In this 

paper, the frequently used Radial Basis Function 

(RBF) kernel (Du et al., 2016; Wang et al., 2018) 

which is known for its excellent general 

performance, wider convergence domain, high-

resolution power and requires fewer parameters was 

adopted. The RBF kernel function is expressed in 

Equation (19). 

( ) ( )2
, expRBF i jK x x x y= − −  (19) 

 

2.3 Classification Performance Evaluation 
 

To check the reliability of the classifiers, nine 

evaluation metrics namely Accuracy, Error rate, 

Sensitivity, Specificity, Precision, F score, Mathews 

Correlation Coefficient (MCC), Geometric Mean 

and Area Under Curve (AUC) were used, and are 

defined as Equations (20) - (28). Here, True Positive 

( TP ) is the number of correct classification counts 

when there is a fault condition, True Negative (TN

) is the number of correct classification counts when 

there is no fault condition, False Positive ( FP ) is 

the number of misclassification counts when there is 

a fault condition and False Negative ( FN ) is the 

number of misclassification counts when there is no 

fault condition. The performance metrics ranges 

between 0 and 1. Obtaining a value closer to 1 for 

these evaluation metrics, except for the error rate 

(Equation (21)), denotes higher classification 

performance which is preferable.  

TP TN
Accuracy

TP FP TN FN

+
=

+ + +
   (20) 

FP FN
Error Rate

TP FP TN FN

+
=

+ + +
  (21) 

TP
Precision

TP FP
=

+
    (22) 

TP
Sensitivity

TP FN
=

+
      (23) 

TN
Specificity

TN FP
=

+
    (24) 

2( * )Precision Recall
FScore

Precision Recall
=

+
   (25) 

( * ) ( * )

( )( )

( )( )

TP TN FP FN
MCC

TP FP TP FN

TN FP TN FN

−
=

+ +

 + +

  (26) 

*
TP TN

GM
TP FN TN FP

=
+ +

   (27) 

1 1

1
( )

N N

i j

i j

AUC I x y
N N

+ −

= =+ −

=    (28) 

where N+  and N−  is the number of positive and 

negative instances respectively. ( 1,2, , )ix i N+=  

are the scores predicted by the model for the N+  

whilst ( 1,2, , )jy j N−=  is the scores predicted by 

the model for the N− . ( )I  is an indicator function 

satisfying the condition ( ) 1I true =  and 

( ) 0I false = . 

 

3 Results and Discussion  
 

3.1 Fuzzy Rough Set Feature Selection 

Results 
 

Table 2 shows the number of optimal features 

selected from the extracted 1 806 statistical time-

domain features for the various monitored 

conditions based on the FRFS(OWA). As observed, 

feature(s) ranging from 5 to 27 were deemed 

relevant to have contained the required variability in 

classifying the monitored conditions. As opposed to 

prior works (Helwig et al., 2015a; Helwig et al., 

2015b; Schneider, 2017), where 20 features were 

selected using correlation-based feature selection, 

Table 2 shows that an average of 15 features would 
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have been optimal for training the ML classifiers for 

classifying the various fault types for each 

monitored condition.  

 

Table 2 Selected Feature(s) from FRFS Methods 

Monitored 

Condition 

Selected Features 

No. ID 

Accumulator  27 

F4, F5, F6, F7, F15, 

F23, F27, F33, F36, 

F38, F47, F50, F54, 

F63, F65, F68, F74, 

F75, F77, F80, F85, 

F87, F88, F97, F98, 

F99, F100 

Cooler 8 

F381, F362, F363, 

F373, F356, F383, 

F139, F323 

Pump 21 

F1030, F1007, F779, 

F780, F781, F408, 

F388, F85, F927, F591, 

F118, F189, F190, 

F191, F186, F123, 

F629, F212, F586, 

F666, F950 

Valve 5 
F1085, F1146, F1091, 

F962, F599 

Average 15  

In this paper, the selected features from FRFS(OWA) 

served as input for training the considered ML 

classifiers including SVM, Multi-Layer Perceptron 

(MLP), k -Nearest Neighbour ( k -NN), C4.5, 

Linear Discriminant Analysis (LDA) and the 

Logistic Regression (LR). However, before training, 

the selected features together with their 

corresponding targets were partitioned into training 

(70%) and testing (30%) sets. The training set is 

used for developing the model whiles the testing set 

is used for validation. Also, due to the stochastic 

learning characteristics of these classifiers in 

producing slightly different output after each run, 10 

runs of training are computed, and the final test 

output is presented as the average from the 10 runs. 

Tables 3 to 6 show the test performance of the 

selected features based on FRFS(OWA) being used as 

inputs for classifying the four monitored conditions 

(accumulator, cooler, pump and valve). 

 

3.2 Classification of Fault Conditions 
 

Table 3 shows the test performance of the 

FRFS(OWA)-based selected features in classifying 

accumulator conditions. As observed, although the 

competing classifiers produced satisfactory results 

above 75% accuracy, SVM and MLP yielded higher 

classification accuracies and AUC scores of 88.97% 

(with 11.03% misclassification rates) and 98% 

respectively. For the remaining metrics, the 

proposed FRFS(OWA)-SVM achieved better results 

such that when there was a specific fault condition, 

87.02% was positively classified (sensitivity) whilst 

in the case of a different fault condition, only 3.54% 

were positively classified (96.46% specificity). 

FRFS(OWA)-SVM was 86.68% precise in positively 

classifying the various fault conditions and showed 

a strong positive relation (MCC of 0.8329). Also, an 

aggregate of the overall performance of FRFS(OWA)-

SVM showed the highest of 0.8683 and 0.9162 for 

F score and Geometric Mean (GM) respectively. 

Similar but relatively lesser observations were seen 

in FRFS(OWA)-MLP. This suggests that, based on the 

27 features selected with the FRFS(OWA) technique 

(refer to Table 2), SVM and MLP would be adequate 

in classifying the conditions of the hydraulic 

accumulator. Even though the classification of the 

accumulator is known to be the most challenging 

among the four monitored hydraulic components 

(Chawathe, 2019; König and Helmi, 2020), the 

proposed framework shows a significant average 

test classification result of 83.36% as compared to 

the 55.43% obtained by Helwig et al. (2015a). This 

significant improvement could be attributed to the 

strength of FRFS(OWA) which automatically selects 

the relevant features without prior knowledge as 

opposed to the correlation-based approach used in 

Helwig et al. (2015a). 

 

Apart from the accumulator, the next most 

complicated monitored hydraulic component to 

classify is the internal pump leakage (Chawathe, 

2019; König and Helmi, 2020). Table 4  shows the 

classification results of the pump conditions using 

the 21 FRFS(OWA) based selected features (refer to 

Table 2). Similar to the classification results of the 

accumulator conditions, SVM and MLP achieved 

the highest classification test accuracies of 99.55%. 

KNN and C4.5 obtained relatively comparative 

classification results of 99.40% and 99.31% 

respectively. A critical look at the AUC scores in 

Table 4  suggests SVM and KNN are the most 

superior in the classification of the internal pump 

conditions. Nonetheless, MLP produces 

comparatively similar AUC results. Comparing the 

average classification test results to the prior work 

of Helwig et al. (2015a) shows a significant 

improvement from 72.55% to 98.85%. This could be 

attributed to the ability of FRFS(OWA) to select the 

most informative features whiles reducing 

uncertainties in the pump dataset. 
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Table 3 Classification Performance of FRFS Methods on Accumulator Conditions 
 

Metric SVM MLP KNN C4.5  LDA LR Average 

Accuracy 0.8897 0.8897 0.7689 0.8855 0.7961 0.7719 0.8336 

Error 0.1103 0.1103 0.2311 0.1145 0.2039 0.2281 0.1664 

Sensitivity 0.8702 0.8678 0.7308 0.8548 0.7438 0.7161 0.7972 

Specificity 0.9646 0.9643 0.9234 0.9621 0.9323 0.9244 0.9452 

Precision 0.8668 0.8677 0.7475 0.8628 0.7606 0.7330 0.8064 

F Score 0.8683 0.8677 0.7328 0.8580 0.7466 0.7160 0.7982 

MCC 0.8329 0.8320 0.6614 0.8217 0.6852 0.6489 0.7470 

GM 0.9162 0.9148 0.8215 0.9069 0.8327 0.8136 0.5564 

AUC 0.9800 0.9800 0.9290 0.9080 0.9370 0.9200 0.8676 

 

Table 4 Classification Performance of FRFS Methods on Pump Conditions 
 

Metric SVM MLP KNN C4.5 LDA LR Average 

Accuracy 0.9955 0.9955 0.9940 0.9931 0.9728 0.9804 0.9885 

Error 0.0045 0.0045 0.0060 0.0069 0.0272 0.0196 0.0115 

Sensitivity 0.9932 0.9932 0.9910 0.9904 0.9595 0.9707 0.9830 

Specificity 0.9976 0.9981 0.9974 0.9967 0.9874 0.9915 0.9948 

Precision 0.9946 0.9934 0.9911 0.9905 0.9622 0.9715 0.9839 

F Score 0.9939 0.9932 0.9910 0.9904 0.9606 0.9708 0.9833 

MCC 0.9917 0.9914 0.9884 0.9872 0.9486 0.9626 0.9783 

GM 0.9954 0.9956 0.9942 0.9936 0.9733 0.9810 0.9742 

AUC 1.0000 0.9990 1.0000 0.9940 0.9930 0.9890 0.9889 

 

Table 5 Classification Performance of FRFS Methods on Cooler Conditions 
 

Metric SVM MLP KNN C4.5 LDA LR Average 

Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000 

Error 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 

Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000 

Specificity 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000 

Precision 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000 

F Score 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000 

MCC 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000 

GM 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 

AUC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

Table 6 Classification Performance of FRFS Methods on Valve Fault Classification 
 

Metric SVM MLP KNN C4.5 LDA LR Average 

Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Error 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Specificity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Precision 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

F Score 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

MCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

GM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

AUC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Unlike the complex nature of the accumulator and 

pump datasets, the complexity in classifying the 

cooler and valve conditions was less. This is 

ascertained by the lesser number of FRFS(OWA) 

based selected features (8 and 5 respectively) 

required to produce the perfect test classification 

results (100.00%) shown in Tables 5 and 6. 

Moreover, the same perfect test classification results 

were obtained by prior works of Helwig et al. 

(2015a).  

 

However, the computational complexity (in time 

and storage) required in the classification of both 

cooler and valve conditions will be lesser when 

compared to the work of Helwig et al. (2015a). This 

is because of the lesser number of FRFS(OWA) based 

selected features of 8 and 5 for cooler and valve 

respectively, as opposed to the 20 features selected 

using correlation-based feature selection adopted by 

Helwig et al. (2015a). Due to the less complicated 

nature in the classification of both the cooler and 

valve conditions, almost all the classifiers, except 

LDA achieved 100.00% test results. Hence, any of 

these classifiers will be adequate for the 

classification of cooler and valve conditions. 

 

4 Conclusions and Future Work 
 

An intelligent and efficient Predictive Maintenance 

(PdM) framework based on the hybrid Fuzzy Rough 

Set Feature Selection (FRFS) has been proposed for 

multiclass fault classification. The FRFS(OWA) 

technique automated the PdM frameworks’ ability 

to select the relevant and most informative features 

for the training of the SVM classifier. The proposed 

framework was verified on the classification of the 

condition of four major hydraulic components 

(accumulator, cooler, pump and valve). After 

comparing with five different and well-established 

classifiers, the SVM proved superior in classifying 

the hydraulic components under consideration in 

terms of test accuracies, AUC scores and seven other 

performance metrics. This demonstrates the 

versatility of the proposed framework in classifying 

the various conditions of the hydraulic components 

whiles reducing the computational complexity. 

Though similar results were seen for cooler and 

valve conditions, a significant average improvement 

of over 26% in test accuracy was obtained for both 

accumulator and pump conditions when compared 

with prior works. The proposed framework 

advances the field of PdM by enhancing the feature 

selection technique used for optimal selection of 

relevant and most informative features from a pool 

of industrial datasets without the need for user-

supplied input which is predominantly subjective 

and may lead to model inefficiencies.  

For future works, the study will further explore a 

comparative analysis of new and modified variants 

of the FRFS technique since the ability to produce 

optimal features may be task-specific. Also, the 

concept of using ensembles instead of standalone 

classifiers will be explored since a considerable 

number of resources such as time is being invested 

in the selection of a specific learner for a given task. 

The usage of ensembles will improve the 

performance of the PdM framework since the 

technique combines different sets of hypotheses 

from multiple learners. 

References 
 

Abdulhafiz, W. A. and Khamis, A. (2013), 

“Handling Data Uncertainty and Inconsistency 

Using Multisensor Data Fusion”, Advances in 

Artificial Intelligence, Vol. 2013, pp. 1 - 11. 

Bach, F. (2017), “Breaking the Curse of 

Dimensionality with Convex Neural Networks”, 

Journal of Machine Learning Research, Vol. 18, 

No. 19, pp. 1 - 53. 

Bharti, K. K. and Singh, P. K. (2015), “Hybrid 

Dimension Reduction by Integrating Feature 

Selection with Feature Extraction Method for 

Text Clustering”, Expert Systems with 

Applications, Vol. 42, No. 6, pp. 3105 - 3114. 

Binsaeid, S., Asfour, S., Cho, S. and Onar, A. 

(2009), “Machine Ensemble Approach for 

Simultaneous Detection of Transient and Gradual 

Abnormalities in End Milling using Multisensor 

Fusion”, Journal of Materials Processing 

Technology, Vol. 209, No. 10, pp. 4728 - 4738. 

Bruzzone, L. and Persello, C. (2009), “A Novel 

Approach to the Selection of Spatially Invariant 

Features for the Classification of Hyperspectral 

Images with Improved Generalization 

Capability”, IEEE Transactions on Geoscience 

and Remote Sensing, Vol. 47, No. 9, pp. 3180 - 

3191. 

Chawathe, S. S. (2019), “Condition Monitoring of 

Hydraulic Systems by Classifying Sensor Data 

Streams”, Proceedings of the IEEE 9th Annual 

Computing and Communication Workshop and 

Conference (CCWC), Las Vegas, NV, USA, pp. 

898 - 904. 

Cornelis, C., Verbiest, N. and Jensen, R. (2010), 

“Ordered Weighted Average Based Fuzzy Rough 

Sets”, In Rough Set and Knowledge Technology 

(RSKT), Yu J., Greco S., Lingras P., Wang G., 

Skowron A. (eds), Springer, Berlin, Heidelberg, 

pp. 78 - 85. 

Di, Z., Kang, Q., Peng, D. and Zhou, M. (2019), 

“Density Peak-Based Pre-Clustering Support 

Vector Machine for Multi-Class Imbalanced 

Classification”, Proceedings of the IEEE 

International Conference on Systems, Man and 

Cybernetics (SMC), Bari, Italy, pp. 27 - 32. 

Du, D., Jia, X. and Hao, C. (2016), “A New Least 

Squares Support Vector Machines Ensemble 

Model for Aero Engine Performance Parameter 

Chaotic Prediction”, Mathematical Problems in 

Engineering, Vol. 2016, pp. 1 - 8. 



18                              GJT  Vol. 6, No. 2, March, 2022 

Gao, X., Wei, H., Li, T. and Yang, G. (2020), “A 

Rolling Bearing Fault Diagnosis Method based on 

LSSVM”, Advances in Mechanical Engineering, 

Vol. 12, No. 1, pp. 1 - 10. 

Guha, R., Chatterjee, B., Hassan, S., Ahmed, S., 

Bhattacharyya, T. and Sarkar, R. (2022), “Py_FS: 

A Python Package for Feature Selection Using 

Meta-Heuristic Optimization Algorithms”, In: 

Computational Intelligence in Pattern 

Recognitionpp, Das A. K., Nayak, J., Naik, B., 

Dutta, S., Pelusi, D. (eds), Springer, Singapore, 

Vol. 1349, pp. 495 - 504.  

Helwig, N., Pignanelli, E. and Schütze, A. (2015a), 

“Condition Monitoring of a Complex Hydraulic 

System using Multivariate Statistics”, 

Proceedings of the Instrumentation and 

Measurement Technology Conference (I2MTC), 

Pisa, Italy, pp. 210 - 215. 

Helwig, N., Pignanelli, E. and Schütze, A. (2015b), 

“Detecting and Compensating Sensor Faults in a 

Hydraulic Condition Monitoring System”, 

Proceedings of Sensor, Nürnberg, Germany, pp. 

641 - 646. 

Herrmann, F. J., Friedlander, M. P. and Yilmaz, O. 

(2012), “Fighting the Curse of Dimensionality: 

Compressive Sensing in Exploration 

Seismology”, IEEE Signal Process Mag., Vol. 29, 

No. 3, pp. 88 - 100. 

Huang, S. Y. (1992), Intelligent Decision Support: 

Handbook of Applications and Advances of the 

Rough Sets Theory, Springer Science and 

Business Media, Germany, 2nd edition, 490 pp. 

Jensen, R. and Shen, Q. (2009), “New Approaches 

to Fuzzy-Rough Feature Selection”, IEEE 

Transactions on Fuzzy Systems, Vol. 17, No. 4, 

pp. 824 - 838. 

König, C. and Helmi, A. M. (2020), “Sensitivity 

Analysis of Sensors in a Hydraulic Condition 

Monitoring System using CNN Models”, Sensors, 

Vol. 20, No. 11, pp. 1 - 19. 

Mahmud, M. N., Ibrahim, M. N., Osman, M. K. and 

Hussain, Z. (2017), “Support Vector Machine 

(SVM) for Fault Classification in Radial 

Distribution Network”, Advanced Science Letters, 

Vol. 23, No. 5, pp. 4124 - 4128. 

Mohapatra, P. and Chakravarty, S. (2015), 

“Modified PSO Based Feature Selection for 

Microarray Data Classification”, Proceedings of 

the 2015 IEEE Power, Communication and 

Information Technology Conference (PCITC), 

Bhubaneswar, India, pp. 703–709. 

Pawlak, Z. (2012), Rough Sets: Theoretical Aspects 

of Reasoning about Data, Springer Science and 

Business Media, Berlin, Germany, Vol. 9, 252 pp. 

Quatrini, E., Costantino, F., Pocci, C. and Tronci, M. 

(2020), “Predictive Model for the Degradation 

State of a Hydraulic System with Dimensionality 

Reduction”, Procedia Manufacturing, Vol. 42, 

pp. 516 - 523. 

Radzikowska, A. M. and Kerre, E. E. (2002), “A 

Comparative Study of Fuzzy Rough Sets”, Fuzzy 

Sets and Systems, Vol. 126, No. 2, pp. 137 - 155. 

Riza, L. S., Janusz, A., Bergmeir, C., Cornelis, C., 

Herrera, F., Śle¸zak, D. and Benítez, J. M. (2014), 

“Implementing Algorithms of Rough Set Theory 

and Fuzzy Rough Set Theory in the R Package 

‘RoughSets’”, Information Sciences, Vol. 287, pp. 

68 - 89. 

Schneider, T., Helwig, N. and Schütze, A. (2017), 

“Automatic Feature Extraction and Selection for 

Classification of Cyclical Time Series Data”, Tm-

Technisches Messen, Vol. 84, No. 3, pp. 198 - 

206. 

Schneider, T., Helwig, N. and Schütze, A. (2018), 

“Automatic Feature Extraction and Selection for 

Condition Monitoring and Related Datasets”, 

Proceedings of the 2018 IEEE International 

Instrumentation and Measurement Technology 

Conference (I2MTC), Houston, TX, USA, pp. 1 - 

6. 

Sheng, C., Li, Z., Qin, L., Guo, Z. and Zhang, Y. 

(2011), “Recent Progress on Mechanical 

Condition Monitoring and Fault Diagnosis”, 

Procedia Engineering, Vol. 15, pp. 142 - 146. 

Wang, K., Wen, X., Hou, D., Tu, D., Zhu, N., 

Huang, P., Zhang, G. and Zhang, H. (2018), 

“Application of Least-Squares Support Vector 

Machines for Quantitative Evaluation of Known 

Contaminant in Water Distribution System using 

Online Water Quality Parameters”, Sensors, Vol. 

18, No. 4, pp. 1 - 19. 

Zadeh, L. A. (1965), “Information and Control”, 

Fuzzy Sets, Vol. 8, No. 3, pp. 338 - 353. 

Zadeh, L. A. (1978), “Fuzzy Sets as a Basis for a 

Theory of Possibility”, Fuzzy Sets and Systems, 

Vol. 1, No. 1, pp. 3 - 28. 
 

Authors 

 
A. Buabeng is a Lecturer at the 

Mathematical Sciences Department of the 
University of Mines and Technology 

(UMaT), Tarkwa, Ghana. He holds an MPhil 

in Mathematics (Statistics). He is currently 
pursuing his PhD in Mathematics. He is a 

member of Ghana Mathematics Society, 

Ghana Statistical Association, and the 
International Association of Engineers (IAENG). His research 

interests are in the application of Machine Learning, to Predictive 

Maintenance, Data Mining and Multivariate Prediction for 

Quality Control. 

 

A. Simons is a Professor of Mechanical 
Engineering Department at the University of 

Mines and Technology, Tarkwa, Ghana. He 

holds the degrees of MSc from the 
Belarusian-Russian University, Mogilev, 

Belarus, PhD from St. Petersburg State 

Mining Institute (Technical University), St. 
Petersburg, Russia and NDT Level II from Trinity NDT College 

Bangalore, India. He is a member of America Society of 

Mechanical Engineers. and Ghana Institution of Engineering. His 
research and consultancy works cover Heat Transfer, Fuels and 

Internal Combusting Engines, Machine Design, Maintenance 



19                              GJT  Vol. 6, No. 2, March, 2022 

Engineering, Accident Vehicle Assessment, Factory Technical 
Audit and Non-Destructive Testing (NDT). 

 

N. K. Frempong is a Senior Lecturer at the 
Department of Statistics and Actuarial 

Science of the Kwame Nkrumah University 

of Science and Technology (KNUST). He 
holds two Master of Science degrees in 

Applied Statistics and Biostatistics from the 

University of Hasselt (Belgium). He 
obtained his PhD in Mathematical Statistics 

from KNUST. He is passionate about 

research in Public Health, Applied Statistics and Data Science.  
 

Y. Y. Ziggah is a Lecturer at the Geomatic 

Engineering Department of the University of 
Mines and Technology (UMaT). He holds a 

BSc in Geomatic Engineering from Kwame 

Nkrumah University of Science and 
Technology, Kumasi, Ghana. He obtained 

his Master of Engineering and Doctor of 

Philosophy degrees in Geodesy and Survey 
Engineering from China University of Geosciences (Wuhan), P. 

R. China. His research interests include artificial intelligent 

application in engineering, geodetic coordinate transformation, 
gravity field modelling, height systems and geodetic deformation 

modelling. 


