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Abstract 

The devastating effects of climate change on the production of agricultural commodities have become a source of worry for 

many developing countries and therefore demand due attention. For these reasons, this paper sought to formulate models for 

analysing the effect of climate change on maize production in Ghana as there has been an alarming fluctuation in productivity 

across the country. Agroclimatic data such as wind speed, temperature, humidity, carbon dioxide and precipitate were obtained. 

First, a Multiple Regression Analysis (MRA) was performed using all the variables that resulted in high multicollinearity 

levels. Factor Analysis (FA) was employed to transform the dataset into a set of uncorrelated features to remedy the 

multicollinearity problem and perform a reliable analysis. Thus, the resulting features were used in developing two models 

based on parametric MRA and non-parametric Multivariate Adaptive Regression Splines (MARS). The results from the 

analysis indicate that the MARS model based on extracted features achieved a higher prediction accuracy of 76.59% when 

compared with the MRA’s model (73.73%). Moreover, the MARS model produced the least Mean Absolute Percentage Error 

(MAPE) of 8.32% when compared to MRA’s 12.12% during validation. 
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1 Introduction 

 

One of the biggest challenges facing developing 

countries such as Ghana is providing food for its 

rapidly increasing population and therefore demands 

great attention. Among the staple food crops, maize 

(zee mays) is the most widely produced and 

consumed cereal crop in Ghana since 1965 and 

continues to play an indispensable role in ensuring 

the nations’ food security (Morris et al., 1999; 

Darfour and Rosentrater, 2016). That is, maize has 

been enormously beneficial to the livelihoods of 

Ghanaians as it accounts for over 50% of the total 

cereal production in Ghana. Generally grown in the 

northern savannah, transitional, forest and coastal 

savannah zones, it occupies about one million 

hectares of land distributed all over the country. Out 

of the total volume of maize produced, 80% is 

sourced from major producing regions such as the 

Eastern, Ashanti and Brong Ahafo whiles the three 

northern regions supply the rest (Angelucci, 2019; 

Wongnaa et al., 2019). Though maize is cultivated 

by the vast majority of rural households in these 

producing regions, 85% of its total volume produced 

is primarily for human consumption while the 

remaining 15% is used in feeding live stocks 

(Andam et al., 2017).  

 

Over the years, the production of maize has seen a 

significant increase. However, there has been an 

alarming fluctuation in its productivity across the 

country despite its economic benefits. Though these 

fluctuations could be attributed to the inadequate 

resources needed for increasing productivity 

(Darfour and Rosentrater, 2016; Wongnaa et al., 

2019), irregularities in climate conditions are cited 

as the primary causes in the continuous reduction in 

the average yield of maize (Ji et al., 2012; Jones and 

Thornton, 2003; Mati, 2000; Tachie-Obeng et al., 

2013; Wang et al., 2011). For these reasons, a 

considerable amount of resources has been 

dedicated to researching the effects of climate 

change on the productivity of agricultural 

commodities. 

 

In literature, notable among the research works 

conducted for exploring the effect of climate change 

on various crops employed the techniques of 

parametric modelling (Asantewaa, 2003; De-Graft 

and Kweku, 2012; Ndamani et al., 2016). For 

instance, Asantewaa (2003) utilised the Error 

Correction Model and Granger Causality Test to 

examine the effects of climate on maize supply. De-

Graft and Kweku (2012) examined the effects of 

climatic variables and crop area on the mean and 

variance of maize yield in Ghana using the Just and 

Pope stochastic production function based on the 

Cobb-Douglas functional form. Ndamani et al. 

(2016) in their attempt to determine the determinants 

of farmers’ adaptation to climate change employed 

the logistic regression model and weighted average 

index in analysing their data. Concerning other 

crops, several kinds of research have used 
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parametric methods in analysing the effect of 

climate on cocoa (Anim-Kwapong and Frimpong, 

2008; Buabeng et al., 2019; Ogunsola and Oyekale, 

2013), rice (Felkner et al., 2009; Matthews et al., 

1997), root crops (Sagoe, 2006; Zakari et al., 2014). 

However, these parametric models assume several 

forms of assumptions (e.g., normality, homogeneity 

of variance, linearity, independence, stationarity 

etc.) which is not always achievable with most 

available data. Thus, limiting the potency of 

parametric models, and therefore the need for a non-

parametric approach that assumes little or no 

assumption about the phenomenon under study. In 

view of this, this paper seeks to analyse the effect of 

climate change on maize production in Ghana using 

both parametric and non-parametric regression 

approaches. The paper will reveal new insights in 

the predictive modelling of agricultural 

commodities since they are essential frameworks in 

addressing food security issues. 

 

2 Resources and Methods Used 
 

2.1 Data Source and Description 
 

In order to assess the effect of climate change on 

maize productivity, secondary data of Ghana’s 

annual agroclimatic variables which span from 1980 

to 2019 were acquired. Table 1 shows the 

agroclimatic variables as well as their source, unit 

and initials used throughout the paper for simplicity. 

 

2.2 Methods Used 
 

One primary concern when analysis multivariate a 

multivariate dataset is the occurrence of 

multicollinearity. The presence of multicollinearity 

when ignored does not only affect the predictive 

ability of a model but also affects the estimation of 

the model parameters and their statistical 

significance tests (Stamatis, 2016). This 

subsequently may result in wrong interpretation 

when making an inference. In literature, among the 

popular method of addressing the issue of 

multicollinearity is to replace the independent 

variables with a fewer number of uncorrelated 

factors via Factor Analysis (Hoerl and Kennard, 

1970). 

 

2.2.1 Factor Analysis 

 

The factor model can be seen as a series of multiple 

regressions, predicting each of the observable 

variables iX  from the values of the unobservable 

common factors if  as shown in Equation (1) 
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2 2 21 1 22 2 2 2
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...

...

                                          

...
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Table 1 Variables Considered for the Analysis 
 

Variable Initials Unit Source 

Precipitation PPT mm 

NASA 

Specific Humidity at 2 

Meters 
QV2M Kg 

Relative Humidity at 2 

Meters 
RH2M % 

Temperature at 2 Meters 

(C) 
T2M ℃ 

Maximum Temperature 

at 2 Meters 
T2MX ℃ 

Minimum Temperature 

at 2 Meters 
T2MN ℃ 

Wind Speed at 10 

Meters 
WS10M m/s 

Range of Wind Speed at 

10 Meters 
WS10MR m/s 

Wind Speed at 2 Meters WS2M m/s 

Range of Wind Speed at 

2 Meters 
WS2MR m/s 

Wind Speed at 50 

Meters 
WS50M m/s 

Range of Wind Speed at 

50 Meters 
WS50MR m/s 

Carbon Dioxide 

Concentration 
CO2 g/MJ 

World 

Bank 

Maize Production PROD Mt MOFA 

 

The variables mean 1  through p  can be viewed 

as the intercept terms for the multiple regression 

models. The regression coefficients ijl  (the partial 

slopes) for all these multiple regressions are called 

factor loadings where ijl  is the loading of the thi  

variable on the 
thj  factor. Finally, the errors i  are 

called the specific factors for variable i. The basic 

model is comparable to a regression model where 

each of the predictors X is to be estimated as a linear 

function of the unobserved common factors 

1, 2..., mf f f . Thus, the explanatory variables are 

1, 2..., mf f f . Therefore, it is assumed that m 

unobserved factors control the variation among the 

dataset. Generally, Equation (1) is reduced into a 

matrix notation as shown in Equation (2). 

 

X Lf= + +    (2) 

 

However, before the Factor procedure is conducted, 

the suitability of the dataset is tested using the 

Kaiser-Meyer-Olkin (KMO) test for determining the 

sampling adequacy (Kaiser, 1974). Also, the 

Bartlett's sphericity test is carried out for testing the 

hypothesis that the correlation matrix is an identity 

matrix, which indicates that a relationship does not 

exist among the items (Bartlett, 1950). For the 

KMO, a minimum value of 0.5 is the acceptable 

threshold to proceed with the factor analysis whiles 

the Bartlett's test (p < 0.05) to be considered 

appropriate (Hair et al., 2009). For consistency, the 
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number of factors that are needed for retention is 

decided based on Kaiser's and the scree plot 

criterion. The Kaiser criterion proposes the retention 

of all of the factors that are above the eigenvalue of 

1. To ensure a well-distributed factor pattern, a 

Factor Analysis with a varimax rotation is adopted. 

 

2.2.2 Multiple Regression Analysis 

 

Multiple regression analysis is a general parametric 

statistical technique used to analyse the relationship 

between a single dependent variable and several 

independent variables. In the regression model, the 

dependent variable iY  is expressed as a linear 

function of the independent variables 'ix s   and a 

random error as shown in Equation (3). 

 

0 1 1 2 2 ...j j j q qj jY x x x    = + + + + +  (3) 

where the 's  are the regression coefficients. Due 

to the parametric nature of the methods’ estimation, 

the basic assumptions accompanying Equation (3), 

thus, must be achieved to ensure a model’s 

adequacy. The assumptions are as follows: 

i. Assumption 1:  ( ) 0E  =  

ii. Assumption 2:  
2var( ) =  for all 1,2...,i n=  

iii. Assumption 3:  cov( , ) 0i j  =  for all i j=  

iv. Assumption 4:  ~ (0,1)i N  

 

Assumption 1 emphasises the need for the residuals 

of the model to be linear and signifies that no 

additional terms are needed to predicts. Assumption 

2 requires that the variance of the residuals i  be the 

same or independent of each other. Assumption 3 

imposes the condition that the terms be uncorrelated. 

Assumption 4 enforces the condition that the error 

terms be normally distributed. 

 

2.2.3 Multivariate Adaptive Regression Splines 

(MARS) 

 

The MARS is a nonparametric regression technique 

that works by dividing the variables into regions, 

producing each region as a least-squares equation 

(Friedman, 1991). Unlike the classical regression 

models, MARS assumes no functional relationship 

between the dependent and the independent 

variables. Instead, MARS makes this relation from 

the set of coefficients called basis functions that are 

exclusively determined from the regression data. 

MARS can be seen as a stepwise linear regression to 

improve the performance of a given regression set. 

MARS creates a separate regression equation for the 

individual linear region in the model. Each obtained 

linear region is called a “knot”, which highlights 

MARS as an applicable solution to multivariate 

regression problems that might cause 

multidimensionality for other techniques. MARS 

model estimates predictive variables whose effect 

on a single predicted variable is being examined in 

the model as in Equation (4). 

 

1

( )k k

M

k

Y h X 
=

= +          (4) 

 

where Y is the independent variable, X  is the 

predictors and k  is the thk  Basis Function (BF) in 

every linear knot. The estimation of the MARS 

model is developed in two steps. Initially (the 

forward step), MARS is estimated with an excessive 

number of knots in order to get a better estimate of 

the predictors (Samui and Kim, 2013). Then, the 

knots that contribute significantly to the overall 

estimation are retained whiles eliminating the less 

significant ones (the backward step). 

 

To ensure the goodness of fit, the Generalized 

Cross-Validation (GCV) (Equation 5) is adopted in 

removing redundant basis functions (Samui and 

Kothari, 2012; Yakubu et al., 2018).  
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
 (5) 

 

where N is the number of instances, M  denotes the 

number of BFs in the final model, 

( ) ( 1)C M h dH= + +  is a function for defining 

complexity which increases M ,  and d  is the 

penalty for each BF included in Equation (4). 

 

3 Results and Discussion 
 

Table 2 shows the descriptive statistics of the 

variables considered in the study. As observed, the 

averages, the deviations from the mean, as well as 

the kurtosis and the skewness value for each of the 

variables is shown. 

 

3.1 Preliminary Analysis 
 

First, all the 13 variables were regressed on the 

production of Maize (PROD). The results are 

presented in Table 3. As observed, the regression 

model had two major deficiencies: 
 

(i). About 92% (12 out of 13) of the variables 

are not significant at (P-Value > 0.05). 

(ii). The Variance Inflation Factor (VIF) values 

of most of the parameters (11 out of 13) 

were greater than 10, which is an indication 

of multicollinearity problem in multiple 

regression analysis involving all the 

variables (Hair et al., 2009). 
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Henceforth, an application of a direct multiple 

regression produced inaccurate interpretations 

(spurious regression). In order to solve the 

multicollinearity problem and perform a reliable 

regression analysis, factor analysis is therefore 

employed to help eliminate or reduce the level of 

multicollinearity. 

 

3.2 Component Factor Analysis 
 

Preliminary inspection of the sphericity value for the 

Bartlett's test is 1215.4620 with a significance < 

0.0001. Moreover, the overall Measure of Sampling 

Adequacy (MSA) value of (0.5830 > 0.5) is 

acceptable (Kaiser, 1974), indicating that the 

correlation matrix is not an identity matrix and the 

absence of any correlations between the variables 

collectively, these tests suggested that dataset is 

appropriate for factor analysis. 

 

Table 4 contains the eigenvalues and percentage of 

variance explained regarding the 13 possible factors. 

Three factors with eigenvalues greater than 1.0 were 

produced, which is the normal cut-off criterion 

(latent root criterion) for the determination and 

extraction of the number of factors. The factors 

account for 93.15 % of the total explained variance, 

and the variance that needed explaining is more than 

60 % to satisfy the sample adequacy (Brown, 2009; 

Ye et al., 2015). The scree and variance explained 

plots in Figs. 1 and 2 support the result of the 

eigenvalue criterion. The scree plot shows the 

number of extracted factors which indicates a 

distinct change in gradient in the slope. Hence, three 

factors are retained for further analysis. 

 

After the extraction technique, the varimax rotation 

is performed besides the unrotated factor solution in 

order to improve interpretation since the unrotated 

factor matrix did not have a completely clean set of 

factor loadings pattern. Table 5 shows the results 

factor loadings after the implementation of both the 

unrotated and varimax-rotated solutions. The results 

bolden only the highest loadings regarding each 

factor, while loadings that are less than absolute 0.65 

are not considered negligible (Hair et al., 2009). In 

this paper, the varimax rotation technique provides 

a more favourable result, as it reflects the patterns 

properly compared with other rotation techniques. 

 

Table 2 Statistical Description  
 

Variable Mean Standard Deviation Kurtosis Skewness 

QV2M 0.0163 0.0009 -0.1744 -0.2021 

WS10M 2.8027 0.1017 -0.2861 0.5085 

WS10MR 2.8210 0.1164 -0.2470 0.3880 

WS2M 1.9094 0.0772 -0.3394 0.4413 

WS2MR 2.2920 0.0879 -0.0001 0.4755 

WS50M 4.1599 0.1368 -0.2249 0.5653 

WS50MR 3.7176 0.1478 -0.1250 0.3800 

CO2 0.3626 0.1174 0.4743 1.0236 

RH2M 70.2022 2.5670 -0.1045 -0.5553 

T2M 26.6261 0.4371 0.9874 -0.3823 

T2MX 31.7775 0.6155 0.6092 0.0550 

T2MN 22.3399 0.3846 0.0347 -0.5238 

PPT 1170.6708 307.6102 9.6626 -2.9244 

PROD 1143.6410 534.6135 -0.8980 0.1872 

 

Table 3 Preliminary Results 
 

Variable Coefficient Standard Deviation t P-value VIF 

Intercept 45286.1201 129495.1231 0.3497 0.7295  

PPT 20.1017 96.3268 0.2087 0.8364 2.1813 

QV2M 6787.3082 8954.4866 0.7580 0.4556 38.8870 

RH2M -18775.3265 32205.2028 -0.5830 0.5651 199.0141 

T2M -217478.8043 208509.2622 -1.0430 0.3069 1657.6640 

T2MX 117283.0769 90437.8968 1.2968 0.2065 433.5271 

T2MN 109408.0656 108565.3880 1.0078 0.3232 494.5028 

WS10M 80206.3462 103119.6653 0.7778 0.4440 1942.7500 

WS10R -53209.1120 45459.0275 -1.1705 0.2528 488.9574 

WS2M -42898.9591 57697.5868 -0.7435 0.4641 755.9903 

WS2MR 44524.4348 44629.7343 0.9976 0.3280 406.1674 

WS50M -41178.8572 52883.9935 -0.7787 0.4435 418.8882 

WS50MR -1071.6350 14230.6810 -0.0753 0.9406 44.4763 

CO2 2209.4601 536.9657 4.1147 0.0004 3.7473 

F-value= 14.5562   P-Value= <0.0001   R2(Adjusted)= 0.8224 
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Table 3 Eigenvalues of the Reduced Correlation Matrix 

Sn Eigenvalue Difference 
Proportion 

(%) 
Histogram Cumulative (%) 

1 7.3820 4.4265 60.47               
 

60.47 

2 2.9554 1.9209 24.21                      
 

84.67 

3 1.0345 0.6244 8.47          
 

93.15 

4 0.4100 0.1693 3.36     
 

96.51 

5 0.2406 0.1437 1.97   
 

98.48 

6 0.0969 0.0385 0.79 
 

99.27 

7 0.0584 0.0247 0.48 
 

99.75 

8 0.0338 0.0298 0.28 
 

100.03 

9 0.0039 0.0035 0.03 
 

100.06 

10 0.0003 0.0009 0.00 
 

100.06 

11 -0.0006 0.0015 -0.01 
 

100.06 

12 -0.0022 0.0022 -0.02 
 

100.04 

13 -0.0044 - -0.04 
 

100.00 

Total 12.20847 - - - - 

 

 
Fig. 1 Scree Plot 

 
Fig. 2 Variance Explained Plot 

 

 

 

3.2.1 Naming the Factors 

Since a satisfactory factor solution has been derived, 

the next attempt is to assign some meaning to the 

factors. Variables with higher loadings influence to 

a greater extent the name or label selected to 

represent a factor. From Table 5 (varimax-rotated 

factor pattern), each factor is named based on the 

variables with significant loadings: 

(i). Factor 1 consists of eight items that focus 

primarily on the wind speed and humidity 

related variables. This component accounts 

for 53 % of the total variance that was 

explained among all of the critical 

components. 

(ii). Factor 2 consist of three items that focus 

primarily on temperature-related variables. 

This component accounts for 26% of the 

total variance. 

(iii). Factor 3 explains 16% of the total variance 

and includes two variables; precipitation 

and carbon dioxide concentration.  

The objective of employing factor analysis is to 

identify and estimate appropriate variables (factor 

scores) to be used as independent variables for the 

Multiple Regression Analysis and the Multivariate 

Adaptive Regression Splines. Factor scores are 

estimated by multiplying the standardised matrix 

form of the dataset of the 13 variables with their 

respective standardised scoring coefficients matrix. 

The thi factor score of the climate variables is 

estimated using Equations (6), (7) and (8). 
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Table 5 Unrotated and Varimax-Rotated Factor Loadings 
 

 Variable 
Unrotated Factor Loadings Varimax Rotated Factor Loadings 

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 

WS10M 0.93 -0.13 0.25 0.97 0.07 0.07 

WS50M 0.91 -0.14 0.30 0.97 0.04 0.01 

WS2M 0.95 -0.11 0.20 0.96 0.11 0.10 

WS2MR 0.92 -0.29 0.07 0.92 -0.02 0.28 

QV2M -0.90 0.04 -0.16 -0.89 -0.17 -0.09 

WS10MR 0.93 -0.26 -0.06 0.88 0.06 0.38 

RH2M -0.92 -0.30 0.07 -0.77 -0.56 -0.17 

WS50MR 0.85 -0.04 -0.45 0.64 0.36 0.62 

T2M 0.41 0.89 -0.17 0.17 0.98 -0.11 

T2MN -0.01 0.96 -0.10 -0.21 0.89 -0.30 

T2MX 0.69 0.70 -0.17 0.46 0.88 0.04 

CO2 -0.19 0.61 0.49 -0.12 0.33 -0.72 

PPT 0.23 -0.33 -0.55 0.09 -0.05 0.67 

Variance 

Explained 

7.38  

(60%) 

2.96  

(24%) 

1.03  

(8%) 

6.53  

(53%) 

3.12  

(26%) 

1.72  

(16%) 

2 2 2

2 2 2

2 2 10

2 2 10

2 2 2
1 * 0.314 * 0.231 *0.081 *0.982

2 2 10
* 0.427 * 0.655
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*0.605 * 0.263 *0.064
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2 2 2

2 2 2

2 2 10

2 2 10

2 2 2
3 *0.131 *1.012 * 2.011 * 5.873

2 2 10
*1.818 *3.255 *5

i PPT i QV M i RH M T M

PPT QV M RH M T M

i T MX i T MN i WS M
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10 2 2
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50 50 2

50 50 2

.630

10 2 2
* 1.429 * 2.968 *1.106

50 50 2
* 3.224 *1.467 * 0.178

i WS MR i WS M i WS MR

WS MR WS M WS MR

i WS M i WS MR i CO

WS M WS MR CO

WS MR WS M WS MR

WS M WS MR CO

  

  

  

  

− − −     
+ − + − +     
     

− − −     
+ − + + −     
     

  (8) 

 

3.3 Development of Parametric and Non-

Parametric Models based on Factor 

Scores 

Based on the factor scores generated using 

Equations (6), (7) and (8), two models (Parametric 

Multiple Linear Regression and Non-Parametric 

Multivariate Adaptive Regression Splines) will be 

fitted to the factor scores data and evaluated to 

determine the “best” model. The most suitable 

model is selected based on the magnitude of the 

adjusted R2 value (Coefficient of determination), 

Root Meat Squared Error (RMSE) and Mean 

Absolute Percentage Error (MAPE). 
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3.3.1 Summary of Multiple Regression Analysis 

(MRA) based on Factor Scores 

 

Multiple regression is applied with the three factors 

assigned as independent variables, and maize 

production as the dependent variable. The result is 

shown in Table 6. As observed, the p-value from the 

F-test (< 0.0001) shows that the model is statistically 

significant. The adjusted R-squared value of 73.73% 

shows the variability of maize production that is 

accounted for by the model. The regression 

coefficients of the factors; FS1, 2 and 3 are all highly 

significant (p-values <0.05). Moreover, the VIF 

values for all the independent variables is 

approximately 1, which indicates the absence of 

multicollinearity. 

 

Regarding the test of assumptions on the parametric 

MRA model, Table 7 shows the test on the 

assumptions regarding the regression model in 

Table 6. As observed, all the assumptions regarding 

MRA are satisfied. These tests suggest that the MRA 

model based on factor scores fits very well, hence, 

is adequate for prediction. 

 

Thus, the Multiple Regression Models based on 

factor scores is expressed as Equation (9). 

  1143.641–166.6312* 1

208.1543* 2 – 382.5133* 3

Y FS

FS FS

=

+
    (9) 

Inference from Equation (9) suggests that FS1 

(comprising of wind speed and humidity related 

variables) and FS3 (precipitation) negatively affects 

maize production by 166.6312 and 382.5133 Mt 

respectively. This is because extreme winds can 

affect maize productivity by toppling plants without 

firm root systems. Also, prolonged and high 

humidity levels tend to promote plant rot due to the 

reduced air circulation needed in the transpiration 

process (i.e., affects water evaporation and the 

drawing of nutrients from the soil). Moreover, 

humid conditions promote the growth of mould and 

bacteria that cause plants to die as well as the invite 

of pests whose larva feed on plant roots and thrive 

in moist soil. In the case of precipitate, although is 

essential for the smooth growth of maize plants, 

excessive amounts can injure the plants (root loss), 

leach vital nitrogen (for photosynthesis) out of the 

soil compact the soil and may lead to erosion. 

 

On the other hand, Equation (9) suggests that FS2 

(comprising of temperature-related variables) 

contributes positively (208.1543 Mt) to maize 

production since ambient temperature influences all 

plant growth processes including photosynthesis, 

respiration, transpiration, breaking of seed 

dormancy, and seed germination. 

 

3.3.2 Summary of Multivariate Adaptive 

Regression Splines (MARS) Model based on 

Factor Scores 

 

Table 8 shows the result of the MARS model 

expressed by four Basis Functions in terms of 

variable structure and the effect of the factors on 

maize production. The model accounts for 76.59% 

of the total variation in maize production. Also, all 

the factors are significant at 95% confidence level. 

Hence, the Multivariate Adaptive Regression 

Splines model based on factor scores is expressed as 

Equation (10). 

  1479.1847 -195.5572* 1

275.7074* 2-54.2087* 3

- 70.1248* 4

Y BF

BF BF

BF

=

+     (10) 

where the Basis Functions (BF’s) in Table 8 are 

expressed as follows: 

BF1 = max(0, FS3 + 3.26047) 

BF2 = max(0, FS2 + 2.55013) 

BF3 = max(0, FS1 + 1.71568) * BF1 

BF4 = max(0, FS3 + 0.348689) * BF2 

 

3.3.2 Validation of MRA and MARS Models 

 

Table 9 compares the validations of the two models; 

the Multiple Regression Analysis (MRA) model and 

Multivariate Adaptive Regression Splines (MARS) 

model. This is achieved by evaluating the 

performance of models in predicting production 

values from 2015 to 2019. The predictions made by 

these two models are presented in Table 9. As 

observed, the MARS produced the least error 

(8.32%) when compared to the MRA’s 12.29%. Fig. 

3 shows the predictions as well as the errors of each 

year for both MRA and MARS models. 

Table 6 Summary of Multiple Regression Models based on Factor Scores 
 

Parameter Coefficient Std. Error t P-Value VIF 

Constant 1143.6410 43.8797 26.0631 < 0.0001  

FS1 -166.6312 44.0051 -3.7866 0.0006 1.0004 

FS2 208.1543 43.9116 4.7403 <0.00001 1.0002 

FS3 -382.5133 45.5865 -8.3909 <0.00001 1.0006 

F-Value= 36.5447   P-Value= <0.0001   R2(Adjusted)= 0.7373 
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Table 7 Test of Assumptions on MRA Model based on Factor Scores 
 

Assumption Hypothesis Statistic (P-Value) 

Linearity 

(Runs) 

H0: ( )iE  =0 

H1: ( )iE  ≠0 
0.0000 

Normality 

(Shapiro-Wilk) 

H0: Normally distributed 

H1: Not normally distributed 
0.9818 (0.7677) 

Serial Correlation 

(Box-Pierce) 

H0: True autocorrelation=0 

H1: True autocorrelation ≠0 
3.2773 (0.0702) 

Homoscedasticity 

(Breusch-Pagan) 

H0: Constant variance 

H1: Non-constant variance 
3.3652 (0.3387) 

 

Table 8 Summary of MARS Model based on Factor Scores 
 

Parameter Coefficient Std. Error t P-Value 

Constant 1479.1847 269.4108 5.4904 <0.0001 

Basis Function (BS1) 1 -195.5572 71.5270 -2.7340 0.0099 

Basis Function (BS2) 2 275.7074 51.3431 5.3699 <0.0001 

Basis Function (BS3) 3 -54.2087 12.3633 -4.3847 0.0001 

Basis Function (BS4) 4 -70.1248 32.0191 -2.1901 0.0355 

F-Value= 32.0870   P-Value= <0.0001   R2(Adjusted)= 0.7659 

 

Table 9 Cross-Validation of MRA and MARS 

Models 

Year Observed 
Predictions 

MRA MARS 

2015 1692 1299.57 1394.78 

2016 1722 1785.22 1838.02 

2017 1990 1752.64 1886.67 

2018 2200 2283.44 2060.95 

2019 2000 2377.44 2115.24 

MAPE 12.29% 8.32% 

 

 
 

Fig. 3 Validation of Models 

 

 

4 Conclusion  

In this paper, models based on the comparative 

analysis of parametric Multiple Regression Analysis 

(MRA) and non-parametric Multivariate Adaptive 

Regression Splines (MARS) have been developed 

for predicting maize production in Ghana with 

cognisance of the devastating effect of climate 

change on productivity. The results from the factor 

analysis indicated that three factors (accounting for 

93.15% of the total variance in the dataset) were 

adequate for the model development. The MARS 

model achieved a higher prediction accuracy of 

76.59% as well as the least Mean Absolute 

Percentage Error (MAPE) of 8.32%. The MRA’s 

model on the other hand achieved 73.73% prediction 

accuracy with 12.12% MAPE. Deductions from the 

models indicated that FS1 (comprising of wind 

speed and humidity related variables) and FS3 

(precipitation) negatively affected maize production 

(166.6312 and 382.5133 Mt respectively) whiles 

FS2 (comprising of temperature-related variables) 

contributed positively (208.1543 Mt). 
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