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Abstract 

Object-Based Image Analysis (OBIA) is becoming dominant in remote sensing image classification. Many supervised 

classification approaches have been applied to objects rather than pixels, and studies have been conducted to evaluate the 

performance of such supervised classification techniques in OBIA. This study compares both the pixel-based and object-based 

techniques in classifying Landsat imagery. Pixel-based image classifiers such as the Maximum Likelihood Classifier and 

object-based image classifiers such as; Support Vector Machine (SVM), Random Forest (RF) and Decision Tree (DT) were 

compared using Landsat 8 imagery. The findings indicate that the SVM and RF methods obtained 94.86% overall accuracy 

with 0.9323 kappa, and 93.60 % overall accuracy with 0.9150 kappa, respectively as opposed to 92.73 % overall accuracy 

with 0.9077 kappa, for the pixel-based approach. From the results of this study, it was observed that the pixel-based image 

classification was constrained because the image pixels are not true geographical objects and the pixel topology is limited. It 

was also observed that the pixel-based classification largely neglects the spatial and photo-interpretive elements such as 

texture, context, and shape, which leads to the classifier resulting in lower classification accuracies. In contrast, the object-

based method, OBIA works on (homogenous) image segmentation objects and can use more elements in the classification. 

This study therefore recommends that when classifying Landsat imagery for projects with higher accuracy requirements, the 

OBIA methods should be considered. 

 

Keywords: Object-Based Image Analysis, Pixel-Based Classification, Support Vector Machine 

 

1 Introduction 
 

Object-based classification has shown a successful 

development in the past two decades with several 

data-intensive technical and scientific fields, such as 

search engines, speech recognition and robotics (Ma 

et al., 2017). Several object-based algorithms have 

been introduced to the remote sensing community 

for decades, ranging from simple to advanced 

classification and regression algorithms such as 

Support Vector Machine (SVM), Random Forest 

(RF), Decision Tree (DT), and Artificial Neural 

Networks (ANN) (Nitze et al., 2012). Image 

classification has become one of the main 

applications for demonstrating object-based 

capabilities. With recent advances in remote sensing 

earth observation techniques, several remote sensing 

specialists are collecting data with distinctive 

properties. The data obtained from the remote 

sensing sources are so large and complex, as a result, 

several methods have been developed to analyse and 

process remotely sensed imagery and derive as 

much information as possible. The preference for 

specific technique or algorithm depends on the goal 

of the study. The two main approaches used to 

analyse remotely sensed images are the traditional 

pixel-based and object-based approaches. The 

object-based approach could also be termed as 

Object-Based Image Analysis (OBIA). OBIA has 

been the most commonly applied methodology in 

the last decade since it classifies images based on 

their spectral and contextual details. In recent times, 

the pixel-based and the OBIA techniques have been 

used in many remote sensing operations. For 

example; performance of Support Vector Machine 

(SVM) and Random Forest (RF) for object-based 

vegetation mapping have been explored (Zhang and 

Xie, 2013). A pixel-based classification approach 

has also been used to demarcate more realistic 

homogeneous areas with much detail (Jenssen and 

Middelkoop, 1992; Hutchinson, 1982). Whiles some 

studies have been made on both pixel-based and 

object-based classification techniques, limited 

literature is available in remote sensing technical 

papers on the use of both techniques in satellite 

image analysis to extract meaningful information 

from it, especially in developing countries such as 

Ghana.  There has been an argument recently as to 

what algorithm is best for analysing satellite 

imagery (Jenssen and Middelkoop, 1992; 

Hutchinson, 1982; Zhang and Xie, 2013). The goal 

of this study was to compare different object-based 

and pixel-based classification methods for 

interpretation of Landsat imagery in Ghana. 

 

1.1 Image Pre-Processing 

 
Remotely sensed image is used for classification, 

analysis and description. The first stage is pre-

processing, which include radiometric and 

geometric corrections. Radiometric correction is the 

procedure used to remove unwanted device noise 

and ambient interference with the light value of the 

image (Story and Congalton, 1986; Lillesand and 
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Kiefer, 1994; Congalton, 1991). The three classes of 

radiometric corrections are; cosmetic rectification to 

account for data errors; relative atmospheric 

correction based on ground reflectance properties 

and actual atmospheric correction based on 

information from atmospheric processes (Bakker et 

al., 2004). The architectural dimension deals with 

different sensors and device systems, geometric 

characteristics and how they influence the 

configuration of the resulting image object. 

Geometric irregularities are naturally present in 

remotely sensed images and the correction 

compensates for the following factors: device 

movement and height, altitude and velocity, 

screening machine orientation, camera optics, 

landscape, relief and curvature and earth rotation 

(Anon., 2014). Precise modelling of the movements 

of the sensor and frame as well as their spatial 

interaction with the planet could be used to resolve 

the variability of nature (Anon., 2014). 

 

1.2 Image Segmentation  
 

Image segmentation is a critical and important step 

in OBIA, as the image artefacts arising from this 

method form the basis for the object-based image 

classification. The objective of image segmentation 

is thus to partition an image into specific properties 

such as texture, colour, shape, size and grey level 

(Hossain and Chen, 2019). The final feature 

extraction and classification in OBIA are highly 

dependent on the quality of image segmentation 

(Ming et al., 2012; Duro et al., 2011). Segmentation 

has been used in remote sensing image processing 

since the advent of the Landsat-1 satellite mostly for 

pixel labelling. The paradigm of pixel labelling has 

however changed to object-based analysis (Hossain 

and Chen, 2019; Li et al., 2016). As a result, the 

purpose of segmentation has been changed from 

pixel labelling to object identification. There is, 

however, no common optimum scale (Hay et al., 

2003; Hay and Castilla, 2006), and researchers are 

attempting to identify scales unique to the dominant 

image artefacts within a setting. Multi-resolution 

segmentation (MRS) has been widely used among 

all the segmentation algorithms. The main challenge 

in MRS is to select suitable parameters as 

geographic objects vary in size, shape and texture 

(Ma et al., 2015). Scale plays a vital role in MRS 

among the parameters. The choice of object-based 

scale in segmentation is vital in OBIA because an 

inaccurate scale could result in either over-or under-

segmentation (Ming et al., 2012). An iterative trial-

and-error approach is widely used in remote sensing 

to assess an appropriate scale (Eisank et al., 2014). 

However, the trial-and-error approach is time-

consuming and inefficient for many 

implementations (Ma et al., 2015). Classification 

algorithms use shapes of items derived from the 

segmentation to determine object patterns. The 

classification algorithms are also used to measure 

the spectral characteristics of each object. Apart 

from the shape, the position of artefacts is also 

important for geospatial study. Traditional pixel-

based precision assessment methods are also 

capable of calculating the shape and location of 

objects (Clinton et al., 2010).  

 

1.1 Object-Based Classification 

  

Remote sensing has developed into a 

multidisciplinary area in which object-based and 

signal processing algorithms already play an 

important role to effectively process acquired data 

and provide reliable information (Camps-Valls and 

Bruzzone, 2005; Camps-Valls et al., 2008). 

Recently, object-based classification has seen a 

rapid increase as a classifier of remotely sensed 

images due to improved classification accuracy over 

traditional techniques, fast processing time, ability 

to handle high data dimensionality and the 

availability of a variable value metric that allows 

collection of useful predictions. Object-based 

algorithms are often categorised as supervised, 

unsupervised, semi-supervised and reinforced 

learning. A supervised algorithm is the one that uses 

coded samples to predict future incidents and adapt 

what has been learned in the past to new data. Upon 

sufficient training, the system can provide 

expectations for any new input (Ma et al., 2017). In 

comparison, unsupervised algorithms for object-

based are used when the knowledge used to train is 

neither marked nor numbered. Unsupervised 

learning explores how a machine can infer a feature 

from unlabeled data to define a secret framework. 

Semi-supervised learning falls in between 

supervised and unsupervised learning. Mostly, the 

cost to label is quite high, as skilled experts are 

required. So, in the absence of labels, semi-

supervised algorithms are the best approach for 

classification (Fumo, 2017). Reinforced learning 

aims at using observations gathered from the 

interaction with the environment to take actions. 

Reinforcement learning algorithm continuously 

learns from the environment in an iterative manner. 

In the process, the algorithm learns from its 

experiences of the environment until it explores the 

full range of possible scenarios (Fumo, 2017). 

 

2 Resources and Method Used  

 

2.1 Resources 
 

The resources used for this study include: Landsat 8 

satellite imagery with acquisition date of 24th 

December, 2019; the path and row for the imagery 

is 194 and 055 respectively; stratified random 

sampling points from the Landsat 8 image 

composite from each landcover; ArcGIS software 

for generating maps; eCognition developer software 

for image segmentation and supervised 
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classification to obtain the sample data for the 

object-based classification. Statistical analysis was 

also performed on the classification results. 

 

2.2 Methods Used 
 

The methods employed for this study include: the   

pixel-based image classifier and the object-based 

classification techniques.  

 

2.2.1 The Pixel-Based Image Classifier 

 

The pixel-based classification procedure include: 

visual interpretation of the Landsat imagery; 

supervised image classification and accuracy 

assessment. The process of supervised image 

classification involves five main steps (Bakker et al., 

2004). The steps include: selection and preparation 

of the image data; defining the training and signature 

file; selection of classification algorithm; running 

the actual classification and validation of the results. 

Figure 1 shows the procedures in performing both 

supervised and unsupervised classification. Object 

processing plays a specific role in translating image 

data to thematic data (Lillesand and Kiefer, 1994). 

The thematic features such as ground cover, land 

use, or soil type are of importance and can be used 

for study than their reflectance values (Lillesand and 

Kiefer, 1994). The correct image data is selected 

based on the knowledge groups of interest and their 

Spatio-temporal characteristics (Bakker et al., 

2004). ArcMap's Image Classification toolbar was 

used for generating comparisons of training and 

signature files used in the supervised classification. 

The primary system of classification is the 

Maximum Likelihood Classification (MLC) 

function (Lillesand and Kiefer, 1994). A signature 

file defining the groups and their detail was a 

required input to this method. The signature file was 

generated through the Image Classification toolbar, 

utilising training samples for supervised 

classification. In this step, the pixels were picked to 

reflect patterns that are known or could be 

recognised using other references to support. Before 

choosing the training samples, awareness of the 

results, the classes needed and the algorithm to be 

used was necessary (Anon., 2014). The algorithm 

was trained to recognise trends and patterns in the 

image pixels with similar characteristics. In 

supervised sorting, the algorithm decides how to 

distribute certain pixels. Specific algorithms include 

the minimum distance, the maximum likelihood, 

and the Mahalanobis distance (Lillesand and Kiefer, 

1994). When the training samples or algorithms are 

decided, the samples are indicative of the target 

groups and can be separated from each other 

(Lillesand and Kiefer, 1994). The Maximum 

Likelihood Classification method was used to 

classify the image in this study. This approach is 

based on the theory of maximum likelihood 

estimation (Nitze et al., 2012). This assigns each 

pixel to one of the different classes, depending on 

the individual signatures (stored in a signature file) 

Once all spectral classes have been identified and the 

classifier algorithm is chosen, the actual 

classification is performed. Based on the values of 

the digital numbers, each pixel in the image is 

allocated to one of the predefined groups that result 

in the final classification results (Bortolot, 1996). 

 

 
 

Fig. 1 Procedures in Performing Pixel-Based 

Image Classification  

 

2.2.2 Object Based Classification Techniques 

 

Image Segmentation: The Landsat 8 image was 

segmented at 3 levels; each segmentation process 

had unique results. Different object layers were used 

for the classification of structures of different scale. 

Image objects at the smallest possible scale were 

produced which in turn produced unique image 

regions. To get ideal results, a different colour and 

shape criteria were tried as much as possible to 

produce image objects of the best border smoothness 

and compactness. The reason for this rule was that 

the spectral information is ultimately the primary 

information contained in image data (Dehvari and 

Heck, 2007). In this study, the segmentation of the 

image was conducted using the multi-resolution 

segmentation (MRS) algorithm contained in the 64-

bit edition of eCognition Developer 9.0 (Anon., 

2010a). A multi-resolution segmentation algorithm 

is a bottom-up technique that transforms pixels or 

individual images into larger ones based on relative 

homogeneity parameters (Qian et al., 2014). 

Parameters of scale, shape and compactness can be 

modified to determine the size and shape of 

segmented objects. The scale parameter determines 

the overall standard deviation of the homogeneity 

criterion for the weighted image layers. In general, 

the higher the scale value, the greater the object size, 

and the higher the variance (Qian et al., 2014). The 
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scale parameters were chosen using the iterative 

"trial and error" method often employed when 

conducting object-based image analysis (Duro et al., 

2011; Everingham et al., 2010). Three reference 

rates were generated with the scale values set at 10, 

20 and 30 also referred to as Level 1, Level 2, and 

Level 3. To establish homogeneous blocks, the 

relatively small value of 10 was set to prevent the 

effect of mixed land cover. The value of 30 was also 

set to produce broader segments representing a 

larger land cover of interest. The two parameters for 

compactness and smoothness were set as well. 

Compactness parameters were set at 0.2 for level 1 

and 0.3 for levels 2 and 3 respectively and then the 

smoothness was selected to be 0.5 for each of the 

levels. Equal weights were defined for each of the 7 

original image layers for segmentation.  

 

Support Vector Machine (SVM): The objective of 

SVM is to find a hyperplane that can separate the 

input dataset into a discrete predefined number of 

classes consistent with the training samples (Qian et 

al., 2014; Zhang and Xie, 2013). The radial basis 

function (RBF) kernel was used for the 

classifications based on the SVM algorithm. The 

parameters used by the SVM algorithm have been 

shown to affect the overall accuracy of 

classification. The RBF kernel has two important 

tuning parameters. The tuning parameters are "size" 

(C) and "sigma" (μ) for SVM models using the RBF 

kernel in "kernlab" package (Duro et al., 2011). 

Raising the former leads to detecting errors that 

could produce an overfit layout (Alpaydin, 2014), 

whereas increasing the latter parameter affects the 

configuration of the dividing hyperplane (Duro et 

al., 2011), and could, therefore, affect overall 

classification accuracy. In the kernlab package, an 

analytical method was adopted utilising the "most 

appropriate" feature (Duro et al., 2011) to measure 

μ directly from the training results (Kuhn, 2011). 

 

Decision Tree: Decision Tree (DT) learning is an 

approach to modelling in statistics, data mining, and 

object-based modelling. The DT is used to move 

from observations on the item to conclusions on the 

target value of the item. System models where the 

focus variable will take a discrete range of values are 

called classification trees; in such systems, the 

leaves reflect the labels of the class, and the roots 

reflect the conjunctures of the features that 

correspond to the labels of the class. DTs in which 

the goal variable take on continuous values are 

referred to as regression trees (Nitze et al., 2012). 

The "full depth" tuning feature, which specifies the 

maximum depth of every particular node in the tree, 

was checked for multiple values for classifications 

based on the DT (Duro et al., 2011).  

 

The initial DT model was used with the “caret” 

bundle on all training data to achieve maximum 

depth of any node and was then used to establish the 

upper bound on the cross-validation values for the 

subsequent model construction (Kuhn, 2011; Duro 

et al., 2011). The "rpart function" kit uses 10-fold 

cross-validation of the training data by design to 

achieve internal classification error rates (Breiman 

et al., 1984). By choosing the tree with the minimum 

cross-validation error within 1 standard error (Duro 

et al., 2011), the tree was then sliced by the “harm 

complexity” (cp) value that is the tree size defined 

by the “1 standard error code”.' The "rpart" package 

maintained the cp value (0.01) by default and was 

adjusted for DT-dependent categorisation only with 

the parameter for maximum depth. 

 

Random Forest: The distinction between the 

Random Forest (RF) algorithm and the DT 

algorithm is that the root node and the function 

nodes in Random Forest processes are uniformly 

separated (Rodriguez-Galiano et al., 2012). In the 

field of remote sensing image processing, it has been 

continuously developed since the RF classification 

was introduced (Breiman and Cutler, 2007) and is a 

reliable classifier (Li et al., 2016). To construct a 

prediction model, the classifier needs only the 

specification of two parameters: the number of 

classification trees (k) and the number of prediction 

variables (n) in each tree node used to render it. 

When the tuning parameter to be used with the RF 

classification is taken into consideration (Li et al., 

2016) it has shown that a large number of trees (k) 

and a limited number of split variables (n) is 

preferred for minimising the error of generalisation 

and the association between trees. The default 

number of 500 trees were specified for RF based on 

literature to prevent overfitting (Duro et al., 2011; 

Breiman and Cutler, 2007). The general procedure 

for the object-based classification is shown in Fig. 2. 

 

 
 

Fig. 2 General Procedure for Object-Based 

Image Classification 
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3 Results and Discussion  
 

3.1 Results  
 

3.1.1 Pixel-Based Classification Results 

 

Five land cover classes were differentiated using the 

Maximum Likelihood pixel-based approach. The 

classes were settlement, forest, vegetation, water 

bodies and bare lands. The classified image is shown 

in Fig. 3. The forest was denser on the east side of 

the map and small spots were on the north and the 

lower southeast side. 

Almost every part of the south is occupied by 

foliage, with the exception of few north-west 

regions. In the eastern side of the map and the 

southern section, the water source is marked in a 

blue hue, with a smooth and a blended form.  

 

3.1.2 Pixel-Based Accuracy Assessment 
 

One of the most important challenges in remote 

sensing is to adequately assess the accuracy of land 

cover maps. The procedures for interpretation and 

calculation of reference data are the final component 

for the accuracy evaluation. The core analytical and 

estimating procedures for accuracy evaluation in 

pixel image analysis have so far been the error 

matrix or sometimes called the confusion matrix or 

contingency table (Hehman, 1997; Stehman and 

Czaplewski, 1998). Table 1 displays each class, the 

base reality of the class chosen, the incorrect points 

and the overall percentage of each class. Tables 2 

and 3 show the details of the producer’s accuracy 

and the user’s accuracy respectively. The Maximum 

Likelihood Classification method computed using 

Equation 1, yielded an overall accuracy of 92.73%, 

which is an acceptable pixel-based classification 

accuracy as described by Anderson, (1971) and 

Anderson et al., (1976). A closer examination of the 

error matrix reveals that major confusion occurs in 

the following pairs of land-cover types: Settlement 

verses forest verses vegetation and water bodies, 

forest verses vegetation and water bodies, vegetation 

verses forest verses settlements and water bodies. 

Water bodies and bare lands were classified 

correctly with no confusion. 

 

The kappa coefficient, which is 0.9077, is quite high 

indicating the MLC method is still satisfactory for 

one to classify remotely sensed images. 

 

 

 
 

Fig. 3 Final Classified Land Cover Map 
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Table 1 Confusion Matrix with the Accuracy from Pixel-Based Approach 
 

Class Names 

Land 

cover 

ID 

Settlements 
Forest 

Reserves 
Vegetations 

Water 

Bodies 
Bareland 

Ground truth 

Totals 

Percentage 

(%) 

Settlements 1 225 22 3 9 0 259 86.87 

Forest 

Reserves 
2 0 152 5 8 0 165 

92.12 

Vegetations 3 1 22 212 1 0 236 89.83 

Water Bodies 4 0 0 0 213 0 213 100.00 

Bare lands 5 0 0 0 0 104 104 100.00 

 Total

s 
226 196 220 231 104 977 

 

Table 2 Producer’s Accuracy from Pixel-Based Approach 
 

Producer’s Accuracy 

Class names Landcover ID Correctly classified Total samples Percentage (%) 

Settlements 1 225 226 99.56 

Forest Reserves 2 152 196 77.55 

Vegetations 3 212 220 96.36 

Water Bodies 4 213 231 92.21 

Bare lands 5 104 104 100.00 

 

Table 3 User’s Accuracy from Pixel Based Approach 
 

Class names Landcover ID Correctly classified Total truth Samples Percentage (%) 

Settlements 1 225 259 86.87 

Forest Reserves 2 152 165 92.12 

Vegetations 3 212 236 89.83 

Water Bodies 4 213 213 100.00 

Bare lands 5 104 104 100.00 
 

The overall accuracy is computed using Equation 

(1). 

 

Total (overall) accuracy = 
Number of corrected points 

total number of points
×100                (1) 

 

Kappa can be used as a measure of agreement 

between model predictions and reality (Tilahun and 

Teferie, 2015) or to determine if the values 

contained in an error matrix represent result 

significantly better than random. Kappa was 

computed using Equation (2). 

  

K =
∑ 𝑥𝑖𝑖−∑ (𝑥𝑖+𝑥𝑥+𝑖)𝑟

𝑖=1  𝑟
𝑖=1

𝑁2−∑ (𝑥𝑖+𝑥𝑥+𝑖)𝑟
𝑖=1

            (2) 

 

 

4.1.3 Object-Based Classification Results 

 

Three reference rates were generated with the scale 

values set at 10, 20, and 30 (also referred to as Level 

1, Level 2 and Level 3). To establish homogeneous 

blocks, the relatively small value of 10 was set to 

prevent the effect of mixed land cover. The value of 

30 was set to produce broader segments representing 

a larger land cover of interest. Also, the two 

parameters for compactness and smoothness were 

set. Shape parameters were set at 0.2 for level 1 and 

0.3 for level 2 and 3 respectively and then the 

smoothness was selected to be 0.5 for each of the 

levels. Equal weights were defined for each of the 7 

original image layers for segmentation. In this study, 

Level 1 segmentation was chosen in analysing the 

dataset since each class was well segmented. Similar 

segmented classes were merged to form a single 

class segment so that the sample selection to be used 

for analysis would be small and simple. Three 

different algorithms were implemented in this study. 

They include; Support vector machine (SVM), 

Random Forest (RF) and Decision tree (DT). The 

dataset used was partitioned with the same training 

and testing data as inputs for the algorithms to avoid 

any biased estimates. A total of 6 877 samples were 

used and partitioned with 70% training set and 30% 

testing set. The total number of support vectors were 

3 541 with 20-fold cross-validation on the training 

dataset (Fig. 4). The SVM model was fitted using 

the training data and yielded an overall accuracy of 

93.68% on the training data (Fig. 4). The accepted 

optimum trained SVM model was further processed 

to make predictions using the testing set. Confusion 

matrix was generated from the testing set based on 

the predictions and the overall statistics were given 

as shown in Fig. 5. The SVM approach gave an 

overall accuracy of 94.86% with its corresponding 

kappa coefficient of 0.9323. Figure 6 shows the 

details of the results obtained from the random forest 

classifier with 2 064 samples from the testing data, 
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2 predictors, and 10-folds cross-validation on the 

testing set. The “mtry” value for the predictor was 

chosen between a range of 0 and 1 to select the 

optimal model using the largest value. The final 

value used for the model was “mtry” = 1 which gave 

an accuracy of 93.60% with a kappa coefficient of 

0.9150. From all the three algorithms, decision tree 

produced the lowest accuracy and kappa statistics of 

87.75% and 0.8243 respectively (Figs. 7 and 8). 

Classes 1, 2, 3, 4 and 5 represents settlement, forest, 

vegetation, water body and bare land respectively. 

The accuracy and kappa coefficient for each of the 

algorithms used are shown in Table 4. 

 

 
 

Fig. 4 Results of SVM model on Training Data 

 

 
 

Fig. 5 Results of SVM Model on Testing Data 

 

 

 
 

Fig. 6 Results of RF Model on the Testing Data  

 

 
 

Fig. 7 Tree Generated from the DT Algorithm 
 

 
 

Fig. 8 Accuracy Report from the DT Algorithm 
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Table 4 Resulting Accuracies and Kappa for 

Each Algorithm 
 

 
 

3.2 Discussion 
 

The overall classification accuracy of pixel-based 

algorithm in this study was 92.73% with kappa 

coefficient equals to 0.9077 as shown in the error 

matrix in Tables 2 and 3, which includes the 

producers’ and user’s accuracy for each class. The 

users and producers’ accuracy are commonly used 

to measure the accuracy of each class alone in pixel-

based classification, and therefore generates an 

overall accuracy report. The SVM algorithm results, 

yielded overall classification accuracy of 94.86% 

and kappa coefficient of 0.9323. The RF algorithm 

produced overall accuracy of the classification of 

93.60% and kappa coefficient 0.9150. The DT 

algorithm also produced overall classification 

accuracy of 87.75% and kappa coefficient of 0.8243. 

From the above findings, it can be observed that the 

object-based algorithms produced higher accuracies 

than the pixel-based classification. This result shows 

that object-based classification has great potential 

for extracting land cover information from Landsat 

imagery. The limitation of pixel-based classifica-

tion where information from surrounding pixels are 

not used in accurately classifying LULC could be 

solved by the object-based classifiers. 

 

4 Conclusions and Recommendation 
 

This paper successfully compared object-based 

classifiers such as SVM, RF and DT as well as the 

pixel-based MLC. From the results of this paper, it 

was observed that RF and SVM algorithms 

produced better classification accuracies compared 

to DT-based algorithms in object-based 

classification. Also, RF and SVM performed better 

than the pixel-based MLC method. This study thus 

concludes that SVM was the most effective and 

robust classification algorithm for performing 

classification on Landsat imagery in the study area, 

when compared with the pixel-based classification 

method and other object-based algorithms such as 

the RF and DT. It is recommended that when 

performing classification on Landsat imagery in the 

study area, object-based approach specifically SVM 

should be considered over RF and DT and pixel-

based classification methods. 
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