
48                                     GJT  Vol. 5, No. 2, March, 2021 

A Robust Approach for Data Leakage Assessment* 
 

1H Abdel-Fatao, 1V. M. Nofong, 1L. K. Agbeyeye, 1Y. M. Umaru, and 1B. K. Alese  
1University of Mines and Technology (UMaT), Tarkwa Ghana 

 
Abdel-Fatao, H., Nofong, M.V., Ledi, K. A., Umaru, M. Y., and Alese B. K. (2021), “A Robust Approach for 

Data Leakage Assessment”, Ghana Journal of Technology, Vol. 5, No. 2, pp. 48 - 59. 
 

Abstract 

Modern market practices encourage organisations to outsource major data management responsibilities of key data-centric 

processes to third-party service providers (agents). A major challenge that confronts organisations that embrace this philosophy 

is how to detect leakage of outsourced data and trace its source. To address the challenge, this study proposes a robust approach 

for establishing the provenance of organisational data leakage. Specifically, a three-stage approach is developed. Firstly, the 

dataset to be outsourced is transformed to make it unique. The uniqueness of the dataset is achieved by subjecting it to a 

composite of three techniques namely smart distribution, the addition of fake objects and application of transposition encoding. 

Secondly, when leakage occurs, an effective how and where data lineage technique is used by a detection model to establish 

the occurrence of leakage. Finally, the leakage source is traced using the guilt assessment model which consists of the 

probabilistic, transposition key and fake object tests. The proposed approach is evaluated using real-world credit card datasets. 

The results obtained from the leakage scenarios showed 100% confidence in detecting leakages and identifying the culpable 

agent of leakage. 

 

Keywords: Data Leakage, Data Allocation, Agent Guilt Assessment, Relational Database 

 

1 Introduction 
 

Recent decades have witnessed the accumulation of 

massive amounts of datasets from various sources 

owing to the advent of Web 2.0, now 3.0; and the 

development of reliable global telecommunication 

infrastructure. Thanks to this technological shift, 

analysis of large datasets is now at the forefront of 

many evolutionary breakthroughs in numerous 

fields today. The vast majority of modern-day 

organisations in multitude of domains such as 

healthcare, public administration, business, 

academic and industrial research, rely on some form 

of data analysis for important strategic decision 

making (Kowalczyk and Buxman, 2014; Ram et. al., 

2016). The influx of data collection and analytics 

tools in businesses nowadays has transformed the 

way business is conducted to produce improved 

income streams. Data-centric businesses are able to 

collect better market and customer intelligence, 

enhance customer experience as well as improve 

internal efficiency and operations (Kowalczyk and 

Buxman, 2014; Ram et. al., 2016). 

 
A major challenge that plagues most data-centric 

organisations is how to store, manage and conduct, 

in a timely manner, useful analysis on huge data 

streams that they continue to generate (Khan et. Al., 

2014, Mazumdar et. Al., 2019). In fact, many of 

these organisations lack adequate storage capacity to 

contain and analyse data generated in-house. To 

address this challenge, modern market practices 

encourage business owners to adopt the strategy 

Business Process Outsourcing (BPO). BPO consists 

in subcontracting management responsibilities of 

key data-driven business processes of an 

organisation to specialist third-party service 

providers (agents). These third-party service 

providers involved in BPO constitute agencies that 

render services such as marketing, advertising, 

human resource, research, etc. for organisations. 

BPO is vital for survival of many organisations in 

today’s extremely competitive business 

environment as it relates to the task of efficient 

organisational designs, in terms of cost reduction, 

productivity, growth and innovative capabilities 

(Chanvarasuth, 2008; Espino-Rodríguez and 

Ramírez-Fierro, 2017).  

BPO essentially requires the agents to be granted 

access to participating organisations’ sensitive 

information to carry out requested services. For 

instance, a business entity may be required to issue 

customer records to an agency in order to conduct 

customer behavioural analysis; a hospital may need 

to deliver patient records to a research institution 

towards the development of treatments for diseases 

etc. Data outsourcing for BPO is therefore deeply 

entrenched in the establishment of trust among 

participating parties (Greenberg et. al., 2008). In 

most cases, legally binding service-level agreements 

are documented to ensure that agents meet owners’ 

expectations, as well as guarantee confidentiality 

and sanctity of outsourced data. 

As more organisations embrace the BPO ideology, 

the volume of sensitive data being shared with and 

outsourced to agents during BPOs continues to grow 

exponentially. These sensitive data may include 

datasets containing records on intellectual property, 

financial information, patient health record, personal 

credit-card data, among others (Shabtai et al., 2012). 

Despite the numerous proven benefits of BPO and 

the stringent security measures that are taken to 

ensure its integrity, service providers sometimes 

*Manuscript received July 1, 2020 

 Revised version accepted January 17, 2021 



49                                     GJT  Vol. 5, No. 2, March, 2021 

intentionally or inadvertently distribute confidential 

company information to unauthorized hands; a 

phenomenon referred to as data leakage.  

Data leakage can be defined as unauthorized, 

intentional (malicious) or inadvertent appropriation 

and transmission of classified data (information) 

from a computer or data centre within an 

organisation to an external entity. Data leakage can 

occur electronically or physically and often 

accomplished by simple memorization and recall of 

information, physical removal of storage media such 

as disks, tapes and reports, or subtly by data hiding. 

Data leakage may be initiated by internal (insider 

leakage) or external (intruder leakage) sources to an 

organisation (Koti et. al., 2017). The main enabling 

risk factors include too many users with excessive 

access privileges (37%), an increasing number of 

devices with access to sensitive data (36%), and the 

increasing complexity of information technology 

(35%), according to Schulze (2018). It may occur as 

a result of an accidental breach, for instance, when 

an employee inadvertently transmits confidential 

information to the wrong recipient of an email. It 

may also occur when sensitive information gets 

delivered to adversaries or competitors by 

disgruntled employees in exchange for huge pay 

check (corporate espionage).  

Data leakage, whether caused by malicious intent or 

an inadvertent spill by an insider or outsider poses 

an ongoing challenge for organisational data 

security. This is because of the many debilitating 

consequences it can cause to organisations (Solami 

et al., 2020). For instance, data leakage can 

potentially result in direct losses which involve 

easily quantifiable tangible damages (Shabtai et al., 

2012). These damages may arise from violations of 

regulations (such as those protecting customer 

privacy) resulting in fines, settlements; litigation 

involving crippling lawsuits and massive financial 

penalties; loss of future sales and plummeting 

revenues; costs of investigation and remedial 

restoration fees. Data leakage can also lead to 

indirect losses which are much harder to quantify 

and have much broader impact in terms of cost and 

time such as reduced share prices as a result of 

negative publicity; damage to a company’s goodwill 

and perpetually tarnished reputation; customer 

abandonment; and exposure of intellectual property 

(business plans, code, financial reports, and meeting 

agendas) to competitors (Shabtai et al., 2012). It is 

therefore crucial for organisations to implement 

policies and measures aimed at mitigating its 

occurrence and to protect themselves against 

liabilities that might arise as a result of data leakage.  

In the light of the ensuing discussion, this study 

tackles the problem conducting digital forensics in 

the event of organizational data leakage. More 

precisely, this paper principally focuses on tackling 

the problem of establishing data provenance 

(Buneman et al., 2001; Cheney et al., 2009) in 

relational databases. Data provenance can generally 

be defined as the process of detecting and accurately 

showing that data leakage emanates from a specific 

agent. Essentially, a data leakage detection and guilt 

assessment problem are considered herein based on 

the following scenario adapted from Papadimitriou 

and Garcia-Molina (2009): A certain company 

issues datasets to 3 agents designated as Ag1, Ag2 

and Ag3, to conduct various assignments. The 

company later discovers a suspicious dataset which 

bears a close similarity to part of the dataset issued 

to the agents in the possession of a competing 

organisation. The company then decides to find out 

whether or not the discovered dataset was in fact its 

bona fide property, and if so, trace which of the three 

agents is culpable of leaking the dataset to the 

competitor. To tackle this problem of data leakage 

detection, this study proposes a three-stage 

sequential approach expounded upon below.  

Firstly, the dataset to be handed over to an agent is 

passed through the transformational model in order 

to make it unique. The transformational model 

achieves the desired uniqueness of the dataset by 

subjecting it to a composite of three techniques 

namely smart distribution, the addition of fake 

objects and application of transposition encoding. 

Secondly, when leakage occurs, an effective how 

and where data lineage technique is used by a 

detection model to establish the occurrence of 

leakage. Finally, the leakage source is traced using 

the proposed guilt assessment model which consists 

of the probabilistic, transposition key and fake 

object tests. The proposed solution to data leakage 

detection was evaluated using real-world credit card 

datasets. The results obtained from the leakage 

scenarios showed 100% confidence in detecting 

leakages and identifying the agent responsible for 

the leakage.  

1.1 Related Work  

The past two decades have witnessed a devotion of 

much attention towards research into corporate data 

leakage detection and guilt assessment by academia 

and industry, especially in relation to cases 

involving relational databases. The vast majority of 

pioneering studies on data leakage detection 

involved the use of watermarking techniques or 

digital fingerprinting (Agrawal and Kiernan, 2002; 

Shabtai et al., 2008; Shabtai et al., 2012; Zhang et 

al., 2004). Watermarking involves embedding 

imperceptible information in the form of text, 

images, audio etc. for right and ownership protection 

of digital intellectual property (Guo et al., 2006).  



50                                     GJT  Vol. 5, No. 2, March, 2021 

Watermarking and/or digital fingerprinting of 

relational databases are quite proficient for 

ownership protection, tamper proofing, and proving 

data integrity. For instance, Agrawal and Kiernan 

(2002) proposed a watermarking technique that 

marks only numeric attributes and those that tolerate 

some changes in their values. The algorithm embeds 

the watermark bits in the least significant bits (LSB) 

of the selected attributes of a selected subset of 

tuples. This technique cannot be used for multi-bit 

watermarks. The LSB bits in any tuple can be altered 

without checking data constraints. It is also not 

resilient to insertion, deletion and alteration attacks. 

Sion et al. (2003) and Sion et al. (2004) proposed a 

watermarking algorithm that embeds the watermark 

into the relational database using data portioning 

technique. The algorithm works in two stages that 

involve encoding and decoding of the bits. The 

algorithm checks the fit tuples determined by the 

attribute and primary key of a relation. For checking 

the tuples, a hash function is applied which uses 

SHA or MD5 algorithm for hashing. Unlike the 

propositions by Agrawal and Kiernan (2002), the 

technique proposed by Sion et al. (2003) is resilient 

to alteration and data loss attack. Also, Radu (2004) 

define some watermark attacking scenarios 

available for the attacker and suggests design 

choices to increase watermark safety. However, 

according to Kamran and Farooq (2018), the 

investigation by the authors was not detailed. 

Zhang et al. (2004) proposed a watermarking 

algorithm in which an identification image is 

embedded into the relational data for representing 

the copyright information. This algorithm takes 

input as the relation 𝑅 with the attributes as 

𝑅(𝐾. 𝐴0 , 𝐴1, . . . , 𝐴𝑛) where 𝐾 is the primary key of 

the database which is never marked. The pixel 

values are marked as 𝐼(𝑣0 , 𝑣1, . . . , 𝑣𝑛). The relation 

𝑅 is divided into groups of uniform size equal to the 

size of the image. The algorithm compares a pixel 

value with an attribute value of a tuple in a relation. 

Pixel value (0 to 255) is divided into 3 parts. Three 

types of watermarks are inserted into the relational 

data. Else if 0 or 255 are repeatedly present, lots of 

attribute values will be marked as the same numbers 

in their decimal. After performing some experiments 

on images, it was verified that the watermarking 

algorithm designed by Zhang et al. (2004) is 

resilient to subset selection attack but not resilient to 

subset alteration, deletion and insertion attacks. 

Shehab et al. (2008) proposed a watermarking 

technique of relational databases, which solves the 

optimization problem based on genetic algorithm 

and pattern search techniques. The technique is 

divided into two parts: Watermark encoding and 

decoding. The watermark encoding is done in three 

stages namely dataset partitioning, watermark 

embedding and optimal threshold evaluation. 

Watermark decoding is also accomplished in three 

stages namely dataset partitioning, threshold-based 

decoding and majority voting. For each tuple r in 

dataset S, the data partitioning algorithm computes 

a message authenticated code. In single bit 

encoding, optimization problem is solved by 

maximizing or minimizing the hiding function, 

which is based on single bit. If the bit is equal to 0, 

the problem is considered as a minimization one 

otherwise, it is considered to be a maximization 

problem. This algorithm is resilient to various 

attacks such as deletion, insertion, and alteration at 

the same time not vulnerable to synchronization 

errors. It also minimizes the probability of decoding 

error because of optimal threshold.  

Al Solami et al., (2020) proposed a fingerprinting 

technique to data leakage detection in relational 

databases. In their study, the authors embed hidden 

signatures inside relational databases, which could 

either be randomly generated or meaningfully 

organized sequences of bits. The approach consists 

of two phases namely the insertion phase and the 

detection phase. In the insertion phase, a buyer-

specific digital signature (fingerprint) is generated 

for each user of a relational database and embedded 

in the original data using an embedding algorithm 

that uses a secret key K. When data leakage occurs, 

a novel fingerprint decoding algorithm which is 

resilient against malicious attacks that might try to 

damage the embedded mark is applied to the 

suspicious data to detect the embedded fingerprint. 

Even though the authors showed the robustness of 

the technique through comparison with some state-

of-the-art techniques, their proposed approach still 

suffer from the short digital watermarking because 

they are based on similar principles. 

All the watermarking and/or digital fingerprinting 

techniques discussed above involved modification 

to the original data. These may sometimes affect the 

outcome of a business process. 

To address the aforementioned problem with the 

watermarking and/or digital fingerprinting 

techniques, Papadimitriou and Garcia-Molina 

(2009) proposed a non-perturbation technique. This 

technique does not require a modification to the 

original data before being issued to an agent. 

Instead, data is distributed among the agents in a 

manner that improves the chance of detecting a 

leaker during leakage. Two algorithms were 

proposed in distributing data to agents namely the e-

random algorithm and the s-random algorithm. The 

e-random is used to allocate data during explicit data 

requests whiles the s-random algorithm is used 

during the sample data requests. Papadimitriou also 

introduced the concept of fake objects in which fake 

but realistic data records are added to the dataset 



51                                     GJT  Vol. 5, No. 2, March, 2021 

given out to service providers. The proposed 

technique is efficient and effective in detecting 

leakage and identifying the suspect. Nevertheless, 

the technique assumes that the total number of 

service providers or agents and their data requested 

are known in advance before data allocation is 

performed. This assumption does not hold in real 

world scenarios. 

 

2 Resources and Methods Used  
 

2.1 Description of Dataset 
 

To tackle the data leakage problem emanating from 

the scenario described in Section 1, this study 

assumes that the leaked dataset contains sensitive 

information such as credit card details. In the light 

of this assumption, a credit card dataset: AER Credit 

Card Data from Book Econometric Analysis, 

originally published alongside the 5th edition of 

William Greene’s book Econometric Analysis, is 

employed to demonstrate the proposed approach for 

data leakage detection and agent guilt assessment. 

Fig. 4 typifies a sample of the AER credit card 

dataset showing six attributes (detailed description 

of the dataset can be found on the website). 

2.2 The Agent Guilt Assessment Model 

The agent guilt assessment model developed in this 

study involves a sequence of three (3) stages namely 

the data request model; data transformation model; 

leakage detection and guilt assessment. Each stage 

of the model is discussed below. 

Table 1 Sample AER Credit Card Dataset  

 

 

 

 

2.2.1 Data Request Model 

The data request model is a functionality that 

enables agents to demand the type and quantity of 

data. Data requests fall into two categories namely 

sample and explicit request (Papadimitriou and 

Garcia-Molina, 2009; Papadimitriou and Garcia-

Molina, 2011). A sample request is made if an agent 

seeks any subset of records from data space without 

any predefined condition(s). For instance, a sample 

request by an agent could be of the form: Supply 

records of 20 students for onward analysis. In 

contrast, a request is said to be explicit or conditional 

if the nature of data requested by must fully satisfy 

all the conditions specified by the agent. For 

instance, an explicit request by an agent could be of 

the form: Supply records of 20 students in the 

computer science and engineering department for 

onward analysis. The data request model 

implemented in this study handles both sample and 

conditional requests. 

2.2.2 Data Transformation Model 

The data transformation model involves three 

techniques - data allocation, fake objects addition 

and transposition encoding. Fig. 1 is a diagrammatic 

depiction of the conceptual view of the data 

transformation model.  

Data Allocation 

The object of the data allocation technique is to 

develop a scheme that guarantees that, overlap 

between datasets issued to agents is minimum. To 

achieve this, data objects to be allocated to agents 

are firstly pruned using priority scheduling (Davies 

and Burns, 2007; Katcher et al., 1993) in order to 

filter data objects returned by the request model. A 

formal explanation of the technique is given below. 

 

Fig. 1 Conceptual View of the Data 

Transformation Model 



52                                     GJT  Vol. 5, No. 2, March, 2021 

Let 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} denote a finite set of n data 

objects in the data distributor’s database. Assume an 

agent denoted by 𝐴𝑔𝑥, requests data records of size 

designated as requestQuantity, a set of data objects 

T(𝐴𝑔𝑥) = {𝑡1, 𝑡2, … , 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦}   satisfying a set 

of m conditions 𝐶 = {𝑐𝑜𝑛𝑑1, 𝑐𝑜𝑛𝑑2, … , 𝑐𝑜𝑛𝑑𝑚} are 

returned, where T(𝐴𝑔𝑥) ⊆ 𝑇. Algorithm 1 details 

the steps in the proposed data allocation approach. 

 
Algorithm 1: Data Allocation 

Require: T = {t1, t2, t3, …, tn}, requestQuantity 

      (C = cond1, cond2, …, condm) 

Ensure: T(Agx) = {t1, t2, t3, …, trequestQuantity} 

1:  T(Agx) ← Ø 

2:  temp ← Ø 

3:  for i = 1, 2, …, n do 

4:      if ti satisfies C then 

5:          temp ꓴ ti 

6:      end if 

7:  end for 

8:  temp ← sort(temp) {sort element in  

      ascending order of allocation frequency} 

9:  for j = 1, 2, …, requestQuantity do 

10:     tj = temp[j] 

11:     T(Agx) ꓴ tj 

12:     update Frequency(tj) 

13: end for 

14: return T(Agx) 

After initialising the agent set 𝐴𝑔𝑥 containing data 

objects to be issued to an agent in line 1, the loop in 

lines 3-7 sifts the database for data objects that 

satisfy the agent’s request to be added to a temporary 

set, temp, initialised in line 2. The data objects in 

temp are then sorted in ascending order of allocation 

frequency in line 8. Thus, each data object and its 

allocation frequency are stored in the distributor’s 

database as a key-value pair. The loop in lines 9-3 

then appends the agents set with sorted data objects 

in temp in line 11, depending on the quantity of data 

objects requested. Additionally, the allocation 

frequency of each data object added to the agent set 

is incremented by a value of one in line 12. 

Transposition Encoding 

This study proposes a technique for establishing the 

originality, hence, ownership of distributed data 

objects called Transposition Box Encoder (TBE). 

Specifically, the TBE uses the underlying 

philosophy of a symmetric key algorithm called 

transposition cipher to permutate attribute values 

between tuples, but with a key. The encoding 

process creates a unique pattern in the dataset that 

will enable backtracking to the source in case of 

leakage. The example below illustrates how the TBE 

works. 

Assume a company decides to outsource the records 

of 10 employees to an agent. One or more columns 

from the company’s database are selected for 

encoding. For instance, one column whose attribute 

values are given as 𝑇 = {𝑡1, 𝑡2, … , 𝑡10}may be 

selected. The distributor then chooses a random key, 

say “xavjtu”, for permutation. Note that, longer keys 

lead to better permutation. The column values are 

assigned to the characters in the key as shown in 

Table 2. 

Table 2 Unsorted Mappings 
 

Key Chars a j t u v x 

Values 

t1 t2 t3 t4 t5 t6 

t7 t8 t9 t10   

While maintaining their assigned attribute values, 

the characters in the keys are sorted alphabetically 

as shown in Table 3.  

Table 3 Sorted mappings 

Key Chars a j t u v x 

Values 

t2 t4 t5 t6 t3 t1 

t8 t10   t9 t7 

Finally, a mapping is formed between attribute 

values in the unsorted Table 2 and sorted Table 3 as 

shown in Table 4.  

Table 4 Transposition Pairs 

Original 

Attributes t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

Transposed 

Attributes t2 t4 t5 t6 t3 t1 t8 t10 t9 t7 

The mapping represents a permutation of attribute 

values that creates unique and hidden pattern in the 

transposed and outsourced data records known only 

to the data distributor. If the transposed data records 

embedded get leaked, tracing the source of the 

leakage reduces to the task of revealing the hidden 

patterns in the leaked data records using the 

appropriate unique keys. 

Addition of Fake Objects 

The TBE technique is robust enough for leakage 

detection, but the addition of fake objects where 

permissible can be used to quickly confirm data 

leakage source. The fake objects may be created by 

data owners into a pool fake object. During 

outsourcing, the list of fake objects associated with 

datasets assigned to specific agents together with the 

agents’ identities are returned from the pool by a 

function created by the data owner. Agents typically 

have a one-to-many relationship with the fake 

objects. It is important to mention however that, the 



53                                     GJT  Vol. 5, No. 2, March, 2021 

addition of fake objects may sometimes impact what 

agents do; hence their addition may not always be 

allowed (Papadimitriou and Garcia-Molina, 2011). 

2.2.3 Leakage Detection and Guilt Assessment 

Leakage Detection 

A data leakage suspicion is said to arise when 

dataset similar to an agent’s dataset is detected in an 

unauthorized location. The suspicious dataset is 

subjected to leakage detection and guilt assessment 

tests upon discovery in order to establish its lineage 

and provenance. During the leakage detection test, 

records of historical queries on the distributor’s 

database are checked. A comparison is then made 

between records generated by each query and the 

suspicious dataset by computing similarity between 

them. Intuitively, high similarity between the 

records of query-generated datasets and the records 

in the suspicious set indicates a high likelihood that 

data leakage might have indeed occurred. The 

similarity between dataset allocated to an agent and 

leaked (suspicious) dataset is computed in terms of 

a Detection Rate (DR) explained below. 

Let 𝑇(𝐴𝑔𝑥) denote dataset allocated to an agent, and 

𝑇(𝑆𝑙) denote the suspicious leaked dataset. The 

similarity between 𝑇(𝐴𝑔𝑥) and 𝑇(𝑆𝑙) in terms of a 

Detection Rate denoted by  𝐷𝑅(𝐴𝑔𝑥), is an intuitive 

numeric similarity metric that compares the number 

of data records that are common to the query-

generated and the suspicious dataset. Thus, the 

𝐷𝑅(𝐴𝑔𝑥) expressed as a percentage is given by 

Equation 1. 

𝐷𝑅(𝐴𝑔𝑥) =
∑ 𝑇(𝐴𝑔𝑥) ⋂ 𝑇(𝑆𝑙)

𝑛=|𝑇(𝑆𝑙)|
1

∑ 𝑇(𝑆𝑙)
𝑛=|𝑇(𝑆𝑙)|
1

𝑥100            (1) 

Two records are said to be common if and only if the 

attributes values of all corresponding fields in the 

two records are the same. High values of 

𝐷𝑅(𝐴𝑔𝑥) indicate high likelihood that the 

suspicious dataset might have originated from the 

data distributor’s database. 

Guilt Assessment 

Having established data leakage, agent guilt 

assessment is conducted by investigating data 

lineage and provenance. To establish the data 

provenance, a composite of three models is utilized 

namely Probabilistic, Transposition and Fake 

objects guilt assessments. Each model is explained 

below. 

Probabilistic guilt assessment: This mathematical 

approach originally propounded by (Papadimitriou 

and Garcia-Molina, 2009; Papadimitriou and 

Garcia-Molina, 2011) computes the probability that 

an agent is guilty of data leakage. Assume a 

company owns a finite set of 𝑇 =
{𝑡1, 𝑡2, … , 𝑡𝑛} records where each 𝑡𝑖 ∈ 𝑇 is a data 

record ∀𝑖 = 1, 2, . . , 𝑛. Let 𝑇(𝐴𝑔1) = {𝑡1, 𝑡2, 𝑡3, 𝑡5} 

and 𝑇(𝐴𝑔2) = {𝑡1, 𝑡4, 𝑡5, 𝑡6} denote the set data 

records received by agents 𝐴𝑔1 and 𝐴𝑔2 

respectively, where [𝑇(𝐴𝑔1), 𝑇(𝐴𝑔2) ⊆ 𝑇]. Also 

let 𝑇(𝑆𝑙) = {𝑡1, 𝑡2, 𝑡5, 𝑡6} denote a set of suspicious 

leaked dataset. Let the assumption hold that the data 

records in the leaked dataset  𝑇(𝑆𝑙) could only have 

come from 𝐴𝑔1 or 𝐴𝑔2. Additionally, assume that an 

agent’s decision to leak a data record is independent 

of the agent’s decision to leak other data records. If 

the probability that each record in the leaked dataset 

𝑡1 ∈ 𝑇(𝑆𝑙)  was obtained by other means is equal to 

𝑝, it follows that the probability that a record 𝑡1 ∈
𝑇(𝑆𝑙)  is leaked equal (1 − 𝑝). Since the data record 

𝑡1 was given to the two agents, the probability that 

either agent 𝐴𝑔1 or 𝐴𝑔2 leaked 𝑡1 is given by 

𝑃(𝐺𝐴𝑔1
|𝑡1) = 𝑃(𝐺𝐴𝑔2

|𝑡1) = (1 − 𝑝)/2 

where 𝑃(𝐺𝐴𝑔1
|𝑡1) and 𝑃(𝐺𝐴𝑔2

|𝑡1) are the respective 

probabilities that the agents 𝐴𝑔1 and 𝐴𝑔2 are guilty 

of leaking the given the data record 𝑡1. In contrast, 

the probability that the data record 𝑡2 is leaked is 

given by 

𝑃(𝐺𝐴𝑔1
|𝑡2) = (1 − 𝑝)             

since only one (agent 𝐴𝑔1) of the two agents 

received the said data record. It follows from the 

ensuing that the probabilities that an agent or the two 

agents are guilty of leaking the remaining data 

records are 

𝑃(𝐺𝐴𝑔1
|𝑡5) =  𝑃(𝐺𝐴𝑔2

|𝑡5) = (1 − 𝑝)/2 

and 

𝑃(𝐺𝐴𝑔1
|𝑡6) = (1 − 𝑝) 

Given the independence assumption made earlier, it 

can be concluded from the above formulations that, 

the probability that agent 𝐴𝑔1 has not leaked any 

data record is joint probability of the agent not 

leaking each data record given by Equation 2. 

𝑃 (𝐺𝐴𝑔1
̅̅ ̅̅ ̅̅ |𝑇(𝑆𝑙)) = (1 −

1−𝑝

2
) ×  (1 − (1 − 𝑝)) ×

       (1 −
1−𝑝

2
)                                                             (2)             

Consequently, the probability that agent 𝐴𝑔1 is 

guilty computes to the relation expressed in 

Equation 3. 



54                                     GJT  Vol. 5, No. 2, March, 2021 

𝑃 (𝐺𝐴𝑔1
|𝑇(𝑆𝑙)) = 1 −  𝑃 (𝐺𝐴𝑔1

̅̅ ̅̅ ̅̅ |𝑇(𝑆𝑙))      (3) 

Similarly, probability that agent 𝐴𝑔2 has not leaked 

any data records is given by Equation 4. 

𝑃 (𝐺𝐴𝑔2
̅̅ ̅̅ ̅̅ |𝑇(𝑆𝑙)) = (1 −

1−𝑝

2
) (1 −

1−𝑝

2
)      (4) 

Hence, the probability that agent 𝐴𝑔2 is guilty 

computes to the expression in Equation 4. 

𝑃 (𝐺𝐴𝑔2
|𝑇(𝑆𝑙)) = 1 −  𝑃 (𝐺𝐴𝑔2

̅̅ ̅̅ ̅̅ |𝑇(𝑆𝑙))       (5) 

From the formulations above, it can be shown that 

the probability that a certain agent 𝐴𝑔𝑥 is guilty of 

leaking a leaked set 𝑇(𝑆𝑙) is given by the general 

formula expressed in Equation 6. 

𝑃 (𝐺𝐴𝑔𝑥
|𝑇(𝑆𝑙)) = 1 − ∏ (1 −

1−𝑝

𝑉𝑡
)𝑡𝑖∈𝑇(𝑆𝑙)∩𝑇(𝐴𝑔𝑥)       (6) 

where 𝑡𝑖 denotes a record in the leaked dataset,  

𝑇(𝐴𝑔𝑥) is the set of data records allocated to agent 

𝐴𝑔𝑥, 𝑉𝑡 is the frequency of the record 𝑡𝑖, and 𝑝  is the 

probability that the record 𝑡𝑖 is not leaked by any 

agent. 

Transposition Guilt Assessment: Probabilistic guilt 

assessments give indications of agents that are likely 

to leak suspicious datasets. Such estimations allow 

for margin of error, hence may not be sufficient in 

absolutely identifying culpable agents. In the light of 

this shortcoming, this study proposes approach, the 

transposition guilt assessment, for identifying guilty 

agents with 100% confidence. In the transposition 

guilt assessment, the keys used to encode datasets 

during the TBE are applied to decode the leaked 

dataset. Algorithm 2 illustrates the steps involved in 

the transposition guilt assessment.  

The leaked dataset (leakSet) and keys used to encode 

datasets issued to agents are taken as input. 

Algorithm 2: Transposition Guilt Assessment 

Require: leakSet, key 

Ensure: keyStatus 

1:  recordCount ← data objects in leakSet 

2:  DecodedSet ← Decode(leakSet, key) 

3:  count ← Ø 

4:  for data object in DecodedSet do 

5:      present ← CompareToDatabase(data object) 

6:      if present is true then 

7:          count ← count + 1 

8:      end if 

9:  end for 

10: min ← recordCount x Ɵ {Ɵ is the threshold  

      value} 

11:  if count ≥ min then 

12:     keyStatus ← Successful 

13:  else 

14:      keyStatus ← Failed 

13: end if 

14: return keyStatus 

 

In line 1 of the algorithm, a count of records in the 

leakSet is executed. In line 2, the encoding keys are 

applied on leaked dataset in order to decode it, and 

data objects stored in a DecodedSet if the leaked 

dataset is successfully decoded. To ensure that the 

data objects in the DecodedSet match datasets in the 

distributor’s database, the loop in line 3-8 checks for 

the presence of data objects in the leaked set from 

the database. If presents, all matching objects are 

counted and compared with the minimum threshold 

value, min, set in line 9. Lines 10-14 check if the 

matching count is at least up to the threshold value. 

If the count passes the threshold, the key is declared 

Successful else it is declared Failed. 

It is worthy of note that the choice of the min 

threshold value is dependent on data type involved. 

Threshold values for very sensitive datasets are set 

low since these types of datasets are very unique and 

nearly impossible to be any source other that the 

distributor’s database. For most purposes, the 

threshold value is set to 0.4 for sensitive datasets and 

0.7 for other data types. 

Fake Objects Guilt Assessment: The presence of one 

or more fake objects can also be used in identifying 

leaked data source. When leakage occurs, the 

suspicious leaked dataset is collected and fake 

record test performed. The test returns the detected 

fake object IDs and the ID of the agent who received 

the fake objects. Algorithm 3 details the fakes 

objects detection test procedure.  

Algorithm 3: Fake Object Detection 

Require: leakSet 

Ensure: DetectedList 

1:  for record in leakSet do 

2:      if recordID is a FakeID then 

3:          DetectedList ← recordID 

4:      end if 

3:  end for 

4:  return DetectedList 
 

The algorithm takes the leaked dataset as its input 

and returns the list of fake records found in the 

leaked set. The loop in lines 1-4 compare the IDs of 

data objects in the leaked data set to fake objects 

contained in the distributor’s database. If the IDs 

match, the object’s ID is added to a list of detected 

fake objects (DetectedList). For the guilt 

assessment, the DetectedList is compared with the 

fake object dataset issued to agents. 

 



55                                     GJT  Vol. 5, No. 2, March, 2021 

3 Results and Discussion  
 

3.1 Experimental Setting 
 

To validate the proposed leakage detection 

approach, the hypothetical data allocation scenario 

described Section 1 is considered. More specifically, 

the data leakage detection problem is tackled using 

the three (3) systematic steps listed below: 
 

   (i)  Allocation of datasets to agents; 
   (ii) Tests run on the suspicious datasets to prove 
         data ownership by a distributor and to detect  
         the occurrence of data leakage; and 
  (iii) Establishment of provenance following the        
          leakage detection above. 

3.1.1 Allocation of Datasets to Agents 

The three agents were allocated dataset from 300 

records of the AER credit card using the data 

allocation Algorithm 1. 𝐴𝑔1 received 𝑇(𝐴𝑔1) =

200 records; agent 𝐴𝑔2, 𝑇(𝐴𝑔2) = 150 records; 

and agent 𝐴𝑔3, 𝑇(𝐴𝑔3) records. Having allocated 

datasets, the following overlapping or identical 

records between datasets received by 𝐴𝑔1, 𝐴𝑔2 and 

𝐴𝑔3 were identified: 

 
(i) 𝑛(𝑇(𝐴𝑔1) ∩ 𝑇(𝐴𝑔2)) = 50 

(ii) 𝑛(𝑇(𝐴𝑔1) ∩ 𝑇(𝐴𝑔3)) = 150 

(iii)𝑛(𝑇(𝐴𝑔2) ∩ 𝑇(𝐴𝑔3)) = 100 

where 𝑛(𝑇(𝐴𝑔1) ∩ 𝑇(𝐴𝑔2)), 𝑛(𝑇(𝐴𝑔1) ∩ 𝑇(𝐴𝑔3)) 

and 𝑛(𝑇(𝐴𝑔2) ∩ 𝑇(𝐴𝑔3)) are respectively the 

number of overlapping records between 𝐴𝑔1 and 

𝐴𝑔2; 𝐴𝑔1and 𝐴𝑔3; as well as 𝐴𝑔2and 𝐴𝑔3.  

 

For the purposes of the experiment conducted in this 

study, 3 and 2 fake objects were respectively added 

to the data records received by 𝐴𝑔1 and 𝐴𝑔2. Thus, 

in total 𝐴𝑔1, 𝐴𝑔2 and 𝐴𝑔3 received 203, 152 and 250 

data records respectively. Fig. 3 exemplifies the data 

allocation process to an agent. 
 

 

Fig. 3 Agent Data Allocation Process 

 

 

 

 

 

 

 

 

 

 

 

 



56                                     GJT  Vol. 5, No. 2, March, 2021 

3.1.2 Leakage Detection Test 
 

It is assumed that the dataset allocated an agent 

𝐴𝑔1were leaked. Thus, the leaked dataset denoted 

by 𝑇(𝑆𝑙), is 𝑇(𝑆𝑙) ≡ 𝑇(𝐴𝑔1) = 203 which suggests 

that all the dataset allocated to Ag1 is the same as 

the leaked dataset. Given that  

∑ 𝑇(𝐴𝑔1) ∩ 𝑇(𝑆𝑙) = 200

𝑛=|𝑇(𝑆𝑙)|

1

 

In accordance with Equation 1, the detection rate 

𝐷𝑅(𝐴𝑔1) becomes  

𝐷𝑅(𝐴𝑔1) =
200

203
𝑥100 = 98.5% 

Similarly,  

∑ 𝑇(𝐴𝑔2) ∩ 𝑇(𝑆𝑙) = 50

𝑛=|𝑇(𝑆𝑙)|

1

 

Hence, the 𝐷𝑅(𝐴𝑔2) is calculated as  

𝐷𝑅(𝐴𝑔2) =
50

203
𝑥100 = 24.6% 

Additionally,  

∑ 𝑇(𝐴𝑔3) ∩ 𝑇(𝑆𝑙) = 150

𝑛=|𝑇(𝑆𝑙)|

1

 

Hence, the 𝐷𝑅(𝐴𝑔3) is calculated as  

  

𝐷𝑅(𝐴𝑔3) =
150

203
𝑥100 = 73.8% 

Fig. 4 shows the results of test on the credit card-

containing database used in the experiments where 

QU1033, QU1034 and QU1035 denote the queries 

that produced data for the agents 𝐴𝑔1, 𝐴𝑔2 and 𝐴𝑔3 

respectively. 

Observe that the detection rate for 𝐴𝑔1 whose 

allocated dataset is the same as the suspicious 

dataset is 98.5%. This falls short of the expected 

100% detection rate. This discrepancy is attributable 

to the 3 fake objects added to 𝐴𝑔1’s dataset. The 

detection rate for 𝐴𝑔1, 𝐴𝑔2 and 𝐴𝑔3 without 

considering the addition of fake objects respectively 

are: 

 
Fig. 4 Results on Detection Test 

𝐷𝑅(𝐴𝑔1) =
200

200
𝑥100 = 100% 

𝐷𝑅(𝐴𝑔2) =
50

200
𝑥100 = 25% 

𝐷𝑅(𝐴𝑔3) =
150

200
𝑥100 = 75% 

The discrepancy between the detection rate with 

fake objects and detection rate without fake object is 

known as detection error, 𝜀. Where the necessity of 

adding fake objects arises, it should be done so as to 

minimize 𝜀 as much as possible. 𝜀 with respect to an 

agent 𝐴𝑔𝑥 is given by Equation 7. 

𝜀(𝐴𝑔𝑥) = |𝐷𝑅(𝐴𝑔𝑥) − 𝐷𝑅(𝐴𝑔𝑥)′|              (7) 

where 𝐷𝑅(𝐴𝑔𝑥)′ is 𝜀 of an agent 𝐴𝑔𝑥 with no fake 

objects added. 𝜀(𝐴𝑔1), 𝜀(𝐴𝑔2) and 𝜀(𝐴𝑔3) for 

agents 𝐴𝑔1, 𝐴𝑔2 and 𝐴𝑔3 are respectively 1.5%, 

0.04% and 1.1%. 

3.2 Agent Guilt Assessment 

An agent guilt assessment is a post-detection 

forensics conducted to trace the agent responsible 

for the leak after data leakage has been confirmed. 

3.2.1 Probabilistic Guilt Assessment 

The probabilistic guilt assessment is based on 

Equation 6 and conducted using datasets allocated to 

𝐴𝑔1, 𝐴𝑔2 and 𝐴𝑔3. Fig. 5 shows the results obtained 

from experiments for each agent. 

 



57                                     GJT  Vol. 5, No. 2, March, 2021 

 

Fig. 5 Assessment of 200 Leaked Objects 

Note that a probability value of 0.4 is set as 

minimum threshold value of culpability. The 

probability values of 1.0, 0.99999, 0.99999 obtained 

represent estimated likelihood of guilt levels of 

agents 𝐴𝑔1, 𝐴𝑔2 and 𝐴𝑔3 respectively. However, 

with these similar probability values for the three 

agents, it makes it nearly impossible to identify the 

culpable agent using this approach. 

The observation above is because, if the number of 

data objects common to dataset allocated to an agent 

and the suspicious dataset exceeds a certain 

threshold, the outcome of Equation 6 is almost 

always guaranteed to be approximately equal to 1. 

The product term in Equation 6 which represents the 

joint probability that an agent is not guilty of leaking 

the data objects approaches zero (0) as the number 

of leaked data objects increase. 

It needs to pointed out that, with smaller sizes of 

leaked data objects, the probabilistic guilt 

assessment technique is able to clearly identify 

without much room for doubt, the culpability of an 

agent. The evidence of this claim is illustrated in Fig. 

6 which is an experiment conducted by randomly 

sampling 10 data objects ear-marked as leaked 

dataset.  

 

Fig. 6 Assessment of 10 Leaked Objects 

With a minimum probability threshold value set at 

0.4, the three agents 𝐴𝑔1, 𝐴𝑔2 and 𝐴𝑔3 exhibit high 

probability values of 0.82, 0.98 and 0.82 

respectively. With these values, it is easy to pin-

point agent 𝐴𝑔2 as the culpable agent since the 

estimated likelihood of leaking the data objects for 

this agent is the highest. 

 

3.2.2 Fake Object Guilt Assessment 
 

Since fake objects are uniquely allocated to agents, 

hence the presence of a particular fake object puts 

the owner of that object in the guilt segment. Fig. 7 

exemplifies the results of fake object guilt 

assessment conducted using the AER Credit Card 

Data allocated to the three agents earlier.  

 

Fig. 7 Fake Object Guilt Assessment 

It can be seen that fake objects detected belong to 

the agent with id AG1 designated agent 𝐴𝑔1 earlier. 

This points to an indisputable culpability of the 

agent Ag1 for the leak which is consistent with the 

expected outcome. 

Note that even though fake object guilt assessment 

may lead to conclusive outcomes, sometimes 

conditions accompanying agents’ requests may 

make it impossible to add fake objects to allocated 

datasets. The proposed transposition key guilt 

assessment can be employed whether or not there 

exists a fake object pool within the allocated datasets 

to conclusively identify a guilty agent. 

3.2.3 Transposition Guilt Assessment 

As discussed earlier, the key used to encode datasets 

allocated to each agent during the transposition 

encoding phase is unique, and facilitates the 

identification of guilty agent(s) with 100% 

confidence. In the experiment, datasets issued to 

agents were encoded by the transposition encoder 

Algorithm 2 each with a unique key. The results 

obtained from the transposition key guilt assessment 

based on the leakage scenario mentioned is shown 

in Fig. 8. 

The key with the id Boatewxfy was the only key 

successful in decoding the data. This suggests that 

the owner of the key is the agent responsible for the 

leakage. From the system, the key can only be linked 

to the agent with id AG1 who is agent 𝐴𝑔1 in our 

scenario. This approach corroborates the outcome 

from the experiment conducted using the fake object 

guilt assessment approach. 



58                                     GJT  Vol. 5, No. 2, March, 2021 

 
 

Fig. 8 Transposition Key Test 

The main strength of the proposed transposition 

guilt assessment lies in the fact that, besides being 

able to identify culpable agents with 100% 

confidence, the outcomes of its experiments are 

agnostic of the size leaked data objects involved. 

4 Conclusions and Recommendations  

This study proposes a robust approach for data 

leakage and guilt assessment problem. In particular, 

a multi-faceted data allocation strategy is developed 

which includes a novel data transformation 

technique known as transposition encoding that 

facilitates leakage detection and guilt assessment. 

The proposed transposition encoding technique 

addresses the shortcomings of the traditional 

watermarking approaches which include 

perturbation of data attribute before allocation. The 

proposed transposition guilt assessment technique is 

unique in that it can identify with 100% confidence, 

a culpable agent responsible for dataset leakage. For 

future works, it is recommended that the 

transposition encoder algorithm be extended to 

encode correlated attributes in a relational database 

such as name and email, age and date of birth, etc. 

References  

Agrawal, R. and Kiernan, J. (2002) “Watermarking 

relational databases”, In Proceedings of the 28th 

International Conference on Very Large Data 

Bases, VLDB ’02, VLDB Endowment, Hong 

Kong, China pp. 155–66. 

Al Solami, E., Kamran, M., Saeed Alkatheiri, M., 

Rafiq, F. and Alghamdi, A. S. (2020), 

“Fingerprinting of Relational Databases for 

Stopping the Data Theft”. Electronics, Vol. 9, 

No. 7, pp.1093. 

Buneman, P., Khanna, S. and Wang-Chiew, T. 

(2001), “Why and where: A characterization of 

data provenance”, in J. Van den Bussche and V. 

Vianu, eds, Database Theory - ICDT 2001, 

Springer, Berlin, Heidelberg, pp. 316–330. 

Chanvarasuth, P. (2008), “The impact of business 

process outsourcing on firm performance”, in 

‘Fifth International Conference on Information 

Technology: New Generations’, Las Vegas, NV, 

pp. 698–703. 

Cheney, J., Chiticariu, L. and Tan, W.-C. (2009), 

“Provenance in databases: Why, how, and 

where”, Found. Trends databases, Hanover, 

MA, USA Vol. 1, No. 4, pp. 379–474. 

Davis, R. I. and Burns, A. (2007), “Robust priority 

assignment for fixed priority real-time systems”, 

28th IEEE International Real-Time Systems 

Symposium (RTSS 2007), Tucson, AZ, pp. 3–14. 

Espino-Rodríguez, T.F. and Ramírez-Fierro, J.C. 

(2017), "Factors determining hotel activity 

outsourcing. An approach based on competitive 

advantage", International Journal of 

Contemporary Hospitality Management, Vol. 29 

No. 8, pp. 2006-2026  

Greenberg, P., Greenberg, R. and Antonucci, Y. 

(2008), “The role of trust in the governance of 

business process outsourcing relationships: A 

transaction cost economics approach” Business 

Process Management Journal, Vol. 14. pp. 593- 

608 

Guo, F., Wang, J., Zhang, Z., Ye, X. and Li, D. 

(2006), “An improved algorithm to watermark 

numeric relational data”, Proceedings of the 6th 

International Conference on Information 

Security Applications, WISA’05, Springer-

Verlag, Berlin, Heidelberg, pp. 138–149. 

Kamran, M. Z. and Farooq, M. (2018), “A 

comprehensive survey of watermarking 

relational databases research”, https://deep-

ai.org/publication/a-comprehensive-survey-of-

watermarking-relational-databases-research. 

Accessed October 12, 2019 

Katcher, D. I., Arakawa, H. and Strosnider, J. K. 

(1993), “Engineering and analysis of fixed 

priority schedulers”, IEEE Transactions on 

Software Engineering Journal Vol 19, No. 9, pp. 

920-934. 

Khan, N., Yaqoob, I., Hashem, I., Inayat, Z., 

Kamaleldin, W., Alam, M., Shiraz, M., and Gani, 

Abdullah (2014), “Big Data: Survey, Tech-

nologies, Opportunities, and Challenges”, 

https://www.readcube.com/articles/10.1155/201

4/712826. Accessed October 12, 2019 

Koti, B.R., Kumar, G.R. and Srinivas, Y. (2017), “A 

comprehensive study and comparison of various 

methods on data leakages”, International 

Journal of Advanced Research in Computer 

Science, Vol. 8, No. 7, pp. 627-631. 

Kowalczyk, M. and Buxmann, P. (2014), “Big Data 

and Information Processing in Organizational 

Decision Processes: A Multiple Case Study”, 

Business & Information Systems Engineering, 

pp. 267–278. 



59                                     GJT  Vol. 5, No. 2, March, 2021 

Mazumdar, S., Seybold, D. and Kritikos, K. (2019), 

“A survey on data storage and placement 

methodologies for Cloud-Big Data ecosystem”, 

Journal of Big Data, Vol 6, No. 15, pp. 1-37. 

Papadimitriou, P. and Garcia-Molina, H. (2009), A 

model for data leakage detection”, 2009 IEEE 

25th International Conference on Data 

Engineering, Shanghai, China, pp. 1307–1310. 

Papadimitriou, P. and Garcia-Molina, H. (2011), 

“Data leakage detection”, IEEE Transaction on 

Knowledge and Data Engineering, USA, Vol. 

23, No. 1, pp. 51–63. 

Radu Sion, M. A. (2004), “Attacking digital water-

marks”, Proceedings of SPIE - The International 

Society for Optical Engineering, San Jose, 

California, Vol. 5306, pp. 848-858. 

Ram, J., Zhang, C. and Koronios, A. (2016), “The 

Implications of Big Data Analytics on Business 

Intelligence: A Qualitative Study in China”, 

Procedia Computer Science, pp. 221-226. 

10.1016/j.procs.2016.05.152. 

Schulze, H. (2018), “Insider threat 2018 report”, 

https://www.africacybersecurityconference.com

/document/Cyber%20Security-insider-threat-

report.pdf. Accessed December, 2018. 

Shabtai, A., Elovici, Y. and Rokach, L. (2012), “A 

survey of data leakage detection and prevention 

solutions”, Springer Briefs in Computer Science, 

Springer Publishing Company, Incorporated, 

Springer, Boston, MA., pp. 17-37. 

Shehab, M., Bertino, E. and Ghafoor, A. (2008), 

“Watermarking relational databases using 

optimization-based techniques”, IEEE 

Transactions on Knowledge and Data 

Engineering Journal, Vol. 20, No. 1, pp. 116–

129. 

Sion, R., Atallah, M. and Prabhakar, S. (2003), 

“Rights protection for relational data”, 

Proceedings of the 2003 ACM SIGMOD 

International Conference on Management of 

Data, ACM, New York, NY, USA, pp. 98–109. 

Sion, R., Atallah, M. and Prabhakar, S. (2004), 

“Rights protection for relational data”, IEEE 

Transaction on Knowledge and Data 

Engineering Journal Vol. 16, No. 2, pp. 1509–

1525. 

Zhang, Z.-H., Jin, X.-M., Wang, J.-M. and Li, D. Y. 

(2004), “Watermarking relational database using 

image”, Proceedings of 2004 International 

Conference on Machine Learning and 

Cybernetics, (IEEE Cat. No.04EX826), 

Shanghai, China, Vol. 3, pp. 1739–1744. 

Authors  

H. Abdel-Fatao is a Lecturer in the 

Computer Science and Engineering 

Department at the University of Mines and 
Technology, Tarkwa, Ghana. He holds a 

PhD in Computer and Information Sciences 

from the University of South Australia, 
Adelaide. His research interests include GPS 

trajectory data mining, artificial intelligence, 

robotics and embedded computing, software and web 
development, bio-informatics. 

V. M. Nofong is a Lecturer at the University 
of Mines and Technology, Tarkwa, Ghana. 

He received a Ph.D. degree in Computer and 

Information Science in 2016 at University of 
South Australia, Adelaide and a B.Sc. degree 

in 2010 from the University of Mines and 

Technology, Tarkwa, Ghana. His current 
research interests include data mining, 

pattern mining, classification and trend prediction. 

L. K. Agbeyeye has his bachelor's degree in 

Computer Science and Engineering from the 

University of Mines and Technology, 
Tarkwa, 2018. His is currently pursuing his 

Masters degree in Computer Science and 
Software Engineering at the Schaffhausen 

Institute of Technology. His research 
interests lie in software quality and machine learning.  

M. Y. Umaru is an Assistant Lecturer in the 

Computer Science and Engineering 
Department at the University of Mines and 

Technology, UMaT, Tarkwa. He is currently 

pursuing PhD in Computer Science and 
Engineering at UMaT, Tarkwa. His research 

interest is in design, implementation, and 

analysis of resource restricted embedded real-time systems. His 

current is looking at the implementation of  Real-Time 
monitoring system on hardware platforms. 

A. K. Alese is currently a Professor with the 

Computer Science Department of the Federal 

University of Technology Akure, Ondo 
State, Nigeria. He holds a Ph.D. degree in 

Computer Science from The Federal 

University of Technology Akure, Ondo 
State, Nigeria. His areas of research include, 

Computer and Network Security, Quantum Computing and 
Digital Signal Processing.  

 

https://www.africacybersecurityconference.com/document/Cyber%20Security-insider-threat-report.pdf
https://www.africacybersecurityconference.com/document/Cyber%20Security-insider-threat-report.pdf
https://www.africacybersecurityconference.com/document/Cyber%20Security-insider-threat-report.pdf

