A Comparative Study to Select the Best Model for Realistic Housing Unit Price Determination*

¹P. Boye, ¹D. Mireku-Gyimah and ²H. Sadiq ¹University of Mines and Technology, PO Box 237, Tarkwa, Ghana ²University of Cape Town, Department of Statistics, South Africa

Boye, P., Mireku-Gyimah, D. and Sadiq, H. (2019), "A Comparative Study to Select the Best Model for Realistic Housing Unit Price Determination", *Ghana Journal of Technology*, Vol. 4, No. 1, pp. 17-22.

Abstract

The aim of this paper is to compare the following developed models: Multiple Linear Regression Model (MLRM), Principal Components Regression Model (PCRM) and Time Series Analysis Model (TSAM) that could be used to determine realistic Housing Unit Price (HUP) for one-bedroom and two-bedroom housing units. The motive is to select the best model for HUP determination. The MLRM and PCRM were developed using yearly monetary costs over 15 years of Housing Unit Major Components (HUMC) that is, cement, iron rods, aluzinc roofing sheets, coral paint, wood and sand. Multicollinearity analysis was performed to show inputs that are redundant and hence can be removed from the MLRM and PCRM development without necessarily having an effect on the modelling accuracy. With regards to TSAM, observed yearly housing unit prices over 15 years were used to determine HUP for one-bedroom and two-bedroom housing units. To overcome the nonstationarity issues, the yearly nominal housing unit prices were transformed to half-yearly real housing unit prices. The developed models were validated by using them to estimate the known HUP in the 15.5 year. From the results, the percentage absolute deviations of the estimated HUP from the known HUP for the MLRM are 1.27% and 2.02 % for one-bedroom housing units respectively; for PCRM, they are 1.43% and 0.00% for one-bedroom housing units. It is thus concluded that TSAM is the best model to be used to determine HUP for both one-bedroom and two-bedroom housing units respectively.

Keywords: Comparative Study, Best Model Selection, Housing Unit Price

1 Introduction

The issue of obtaining an optimal Housing Unit Price (HUP) acceptable by both sellers and prospective buyers is a great concern in Ghana, Africa and the world at large due to its influence in driving a country's economy. Consequently, both sellers and buyers have to negotiate a lot to find a price that is acceptable to both parties (Merlo and Ortalo-Magne', 2004). To find an optimal price, researchers have tried some approaches such as Sales Comparison Method (SCM) and Multiple Linear Regression Method (MLRM) to determine the HUP. The SCM suggests that the value of the subject property equals sale prices of similar properties that have been sold recently and are in close proximity to the subject property with due consideration to adjustments for dissimilar characteristics (Isakson, 2002; Kahr and Thomsett, 2005). Since each housing unit is unique in terms of its construction, condition, financing and location (Cupal, 2017), the adjustments made by valuers may be inconsistent and speculative and thus cannot be relied upon to give realistic HUP (Brueggeman and Fisher, 2001). The MLRM can give better estimates of HUP (Chaphalkar and Dhatunde, 2015) but the possible multicollinearity issues in the independent variables and the

assumption that they are normally distributed are sometimes not properly resolved by researchers. Again, researchers that have developed MLRMs to estimate HUP have often included intangible housing characteristics as the independent variables, such as quality of neighbourhood (King, 1976) and location (Ayan and Erkin, 2014), all of which may not help in estimating the realistic HUP. To overcome these weaknesses, Boye et al. (2017) used MLRM to determine the HUP for onebedroom and two-bedroom housing units using monetary cost of selected Housing Unit Major Components (HUMC). Boye et al. (2018) used Principal Components Regression Model (PCRM) to determine the HUP for one-bedroom and twobedroom housing units using the same monetary cost of the selected HUMC. Boye et al. (2019) used Time Series Analysis Model (TSAM) to determine HUP for one-bedroom and two-bedroom housing units using 15 years real monetary housing unit prices.

This study compares the results obtained from using MLRM, PCRM and TSAM by Boye *et al.* (2017, 2018, 2019) to determine HUP and thus select the best model to determine realistic HUP.

2 Resources and Methods Used

2.1 Resources

In developing the MLRM and PCRM, three main resources were used:

- (i) Data comprising the quantities of HUMC and HUPs obtained from Regimanuel Gray Estates Ltd., an estate development agency in Accra Metropolitan Area. Table 1 shows the specific HUMC, their units of measurement and the respective quantities needed to construct 1-bedroom and 2- bedroom housing units.
- (ii) The respective unit costs of the HUMC over a 15-year period obtained through market survey (Table 2).
- (iii) "R" Statistical software.

In formulating the MLRM and PCRM, the quantities of HUMC data in Table 1 was converted to monetary values in US Dollars by using their respective unit costs of the total quantity of each HUMC in Table 2 to obtain primary data for onebedroom and two-bedroom housing units. See Tables 3 and 4.

 Table 1 Quantities of Housing Unit Major Components

Material	Unit	1 Bedroom	2 Bedroom
Cement	kg	35 640	40 200
Sand	m ³	86	99
16mm Iron Rods	t	2	3
Aluzinc Roofing	m ²	365	678
Coral Paint	1	287.50	322
Wood	m ³	4.81	6.36

The TSAM was developed based on the same HUPs (nominal values) obtained from Regimanuel Gray Estates Ltd. (Tables 4 and 5). For stationarity to be attained, the nominal values were transformed to real monetary HUPs (Table 6) using the relation:

$$RV_i = NV_i \times ER_i \times \left(\frac{CPI_{2003}}{CPI_{NV_i}}\right)$$

for i = 2003 – 2017,

where

RV_i is the i th Real Value;

NV_i is the i th Nominal Value;

ER_i is the i th Exchange Rate;

 CPI_{2003} is the Consumer Price Index referenced at 2003; and CPI_{NVi} is the Consumer Price Index for the i th Nominal Value.

Table 2Unit Price of Housing Unit Major Components (US \$), 2003 – 2017.5

					Year					
Material	2003	2003.5	2004	2004.50	2005	2005.50	2006	2006.5	2007	2007.50
Cement (kg)	0.0017	0.0025	0.003	0.0083	0.0147	0.017	0.0183	0.02	0.0222	0.0243
Sand (m ³)	17.06	22.17	27.28	32.42	37.50	40.60	43.75	58.83	73.75	84.30
16mm Iron Rods(t)	159.76	167.80	175.88	183.96	192	204.60	217.20	218.89	220.55	228.60
Aluzinc Roofing (m ²)	3.47	3.84	4.21	4.65	4.95	5.30	5.79	6.26	6.63	7.00
Coral Paint (1)	0.02	0.20	0.38	0.56	0.74	0.93	1.13	1.33	1.52	1.71
Wood (m^3)	58.23	67.78	76.76	85.71	95.20	105.34	115.27	125.31	135.61	145.92
Material	2008	2008.5	2009	2009.5	2010	2010.5	2011	2011.5	2012	2012.5
Cement (kg)	0.0258	0.0267	0.0438	0.0513	0.0567	0.0617	0.0697	0.0735	0.0742	0.0750
Sand (m ³)	95.00	106.14	117.19	118.40	119.69	120.50	121.25	58.83	123.00	0.0750
16mm Iron Rods (t)	236.73	245.98	255.15	266.60	278.05	282.78	287.50	295.00	302.50	311.25
Aluzinc Roofing (m ²)	7.47	7.92	8.31	8.70	9.15	9.58	9.99	10.40	10.83	11.34
Coral Paint (1)	1.91	2.11	2.30	2.50	2.69	2.89	3.08	3.27	3.47	3.68
Wood (m ³)	155.95	165.99	176.30	186.60	196.64	206.67	216.98	227.29	237.32	247.36
Material	2013	2013.5	2014	2014.5	2015	2015.5	2016	2016.5	2017	2017.5
Cement (kg)	0.0780	0.1090	0.1375	0.1383	0.1417	0.1488	0.1533	0.1583	0.1658	0.1717
Sand (m ³)	125.00	131.20	137.5	143.76	150.00	155.10	160.22	165.37	170.40	178.00
16mm Iron Rods (t)	320.00	328.70	337.50	353.43	369.25	377.30	385.37	393.44	401.49	409.55
Aluzinc Roofing (m ²)	11.67	12.00	12.51	12.82	13.13	13.50	13.87	14.25	14.60	14.97
Coral Paint (1)	3.86	4.05	4.25	4.46	4.65	4.83	5.01	5.19	5.37	5.54
Wood (m ³)	257.66	267.97	278.00	288.04	298.35	307.81	316.79	325.90	335.23	345.16

	Housing Unit						
	Price	Cost of Cement	Cost of Sand	Cost of Iron Rods	Cost of Roofing	Cost of Paint	Cost of Wood
Year	(HUP)	(CC)	(CS)	(CIR)	(CR)	(CP)	(WP)
2003	31 455.00	60.59	1 467.16	319.52	1 266.55	5.75	280.33
2003.5	33 260.00	89.10	1 906.62	335.60	1 401.60	57.50	326.30
2004	35 065.00	106.92	2 346.08	351.76	1 536.65	109.25	369.53
2004.5	36 870.00	295.81	2 788.12	367.92	1 697.25	161.00	412.62
2005	38 675.00	523.91	3 225.00	384.16	1 806.75	212.75	458.30
2005.5	40 587.50	605.88	3 491.60	409.20	1 934.50	267.38	507.12
2006	42 500.00	652.21	3 762.50	434.40	2 113.35	324.88	554.92
2006.5	42 500.00	712.80	5 059.38	439.78	2 284.90	382.38	603.26
2007	42 500.00	791.21	6 342.50	441.10	2 419.95	437.00	652.84
2007.5	44 604.00	866.05	7 249.80	457.20	2 555.00	491.63	702.47
2008	46 708.00	919.51	8 170.00	473.46	2 726.55	549.13	750.76
2008.5	49 020.00	951.56	9 128.04	491.96	2 890.80	606.63	799.09
2009	51 332.00	1 561.03	10 078.34	510.30	3 033.15	661.25	848.73
2009.5	51 332.00	1 828.33	10 182.40	533.20	3 175.50	718.75	898.31
2010	51 332.00	2 020.79	10 293.34	556.10	3 339.75	773.38	946.65
2010.5	53 873.00	2 198.99	10 363.00	565.56	3 496.70	830.88	994.93
2011	56 414.00	2 484.11	10 427.50	575.00	3 646.35	885.50	1 044.56
2011.5	59 206.50	2 619.54	10 500.60	590.00	3 796.00	940.13	1 094.20
2012	61 999.00	2 644.49	10 578.00	605.00	3 952.95	997.63	1 142.48
2012.5	61 999.00	2 673.00	10 668.30	622.50	4 139.10	1 058.00	1 190.82
2013	61 999.00	2 779.92	10 750.00	640.00	4 259.55	1 109.75	1 240.40
2013.5	65 068.00	3 884.76	11 283.20	657.40	4 380.00	1 164.38	1 290.03
2014	68 137.00	4 900.50	11 825.00	675.00	4 566.15	1 221.88	1 338.32
2014.5	69 942.00	4 929.01	12 363.36	706.86	4 679.30	1 282.25	1 386.65
2015	71 747.50	5 050.19	12 900.00	738.50	4 792.45	1 336.88	1 436.29
2015.5	73 552.00	5 303.23	13 338.60	754.60	4 927.50	1 388.63	1 481.83
2016	75 357.50	5 463.61	13 778.92	770.74	5 062.55	1 440.38	1 525.06
2016.5	77 162.00	5 641.81	14 221.82	786.88	5 201.25	1 492.13	1 568.92
2017	78 967.50	5 909.11	14 654.40	802.98	5 329.00	1 543.88	1 613.83
2017.5		6 119.39	15 339.66	819.10	5 464.05	1592.75	1 661.63

Table 3Price of Housing Unit and Cost of Total Quantity of HUMC (US \$) 2003 – 2017
(Primary Data for One-Bedroom)

Table 4Price of Housing Unit and Cost of Total Quantity of HUMC (US \$) 2003 – 2017

(Primary Data for Two-Bedroom)

	Housing Unit						
	Price	Cost of Cement	Cost of Sand	Cost of Iron Rods	Cost of Roofing	Cost of Paint	Cost of Wood
Year	(HUP)	(CC)	(CS)	(CIR)	(CR)	(CP)	(CW)
2003	34 500.00	68.34	1 688.94	479.28	2 352.66	6.44	370.49
2003.5	37 280.00	100.50	2 194.83	503.40	2 603.52	64.40	431.26
2004	40 070.00	120.60	2 700.72	527.64	2 854.38	122.36	488.39
2004.5	41 880.00	333.66	3 209.58	551.88	3 152.70	180.32	545.34
2005	43 680.00	590.94	3 712.50	576.00	3 356.10	238.28	605.72
2005.5	45 841.00	683.40	4 019.40	613.80	3 593.40	299.46	670.24
2006	48 000.00	735.66	4 331.25	651.60	3 925.62	363.86	733.42
2006.5	48 000.00	804.00	5 825.17	656.67	4 244.28	428.26	797.30
2007	48 000.00	892.44	7 301.25	661.65	4 495.14	489.44	862.83
2007.5	53 579.00	976.86	8 345.70	685.80	4 746.00	550.62	928.43
2008	59 160.00	1 037.16	9 405.00	710.19	5 064.66	615.02	992.25
2008.5	64 001.00	1 073.34	10 507.86	737.94	5 369.76	679.42	1 056.13
2009	68 840.00	1 760.76	11 601.81	765.45	5 634.18	740.60	1 121.73
2009.5	74 419.00	2 062.26	11 721.60	799.8	5 898.60	805.00	1 187.26
2010	80 000.00	2 279.34	11 849.31	834.15	6 203.70	866.18	1 251.14
2010.5	80 000.00	2 480.34	11 929.50	848.34	6 495.24	930.58	1 314.96
2011	80 000.00	2 801.94	12 003.75	862.50	6 773.22	991.76	1 380.56
2011.5	89 001.00	2 954.70	12 087.90	885.00	7 051.20	1 052.94	1 446.16
2012	98 000.00	2 982.84	12 177.00	907.50	7 342.74	1 117.34	1 509.97
2012.5	103 671.00	3 015.00	12 280.95	933.75	7 688.52	1 184.96	1 573.85
2013	109 340.00	3 135.60	12 375.00	960.00	7 912.26	1 242.92	1 639.39
2013.5	114 919.00	4 381.80	12 988.80	986.10	8 136.00	1 304.10	1 704.99
2014	120 500.00	5 527.50	13 612.50	1 012.50	8 481.78	1 368.50	1 768.80
2014.5	126 727.00	5 559.66	14 232.24	1 060.29	8 691.96	1 436.12	1 832.68
2015	132 955.00	5 696.34	14 850.00	1 107.75	8 902.14	1 497.30	1 898.28
2015.5	139 183.00	5 981.76	15 354.90	1 131.90	9 153.00	1 555.26	1 958.47
2016	145 410.00	6 162.66	15 861.78	1 156.10	9 403.86	1 613.22	2 015.61
2016.5	151 637.00	6 363.66	16 371.63	1 180.32	9 661.50	1 671.18	2 073.57
2017	157 865.00	6 665.16	16 869.60	1 204.47	9 898.80	1 729.14	2 132.93
2017.5		6 902.34	17 424.27	1 228.65	10 149.66	1 783.88	2 193.53

Table 4 Half- Yearly Prices of One-Bedroom Housing Unit (US \$) 2003 – 2017

Year Price (\$)	2003 31455	2003.5 33260	2004 35065	2004.5 36870	2005 38675	2005.5 40587.5	2006 42500	2006.5 42500	2007 42500	2007.5 44604	2008 46708	2008.5 49020	2009 51332	2009.5 51332	2010 51332
Year Price	2010.5	2011	2011.5	2012	2012.5	2013	2013.5	2014	2014.5	2015	2015.5	2016	2016.5	2017	2017.5

65068 68137

69942 71747.5 73552

75357.5 77162

78967.5 83 600

Table 5 Half- Yearly Prices of Two-Bedroom Housing Unit (US \$) 2003 - 2017

61999 61999

61999

59206.5

(\$) 53873 56414

Year Price (\$)	2003 34500	2003.5 37280	2004 40070	2004.5 41880	2005 43680	2005.5 45841	2006 48000	2006.5 48000	2007 48000	2007.5 53579	2008 59160	2008.5 64001	2009 68840	2009.5 74419	2010 80000
Year Price (\$)	2010.5 80000	2011 80000	2011.5 89001	2012 98000	2012.5 103671	2013 109340	2013.5 114919	2014 120500	2014.5 126727	2015 132955	2015.5 139183	2016 145410	2016.5 151637	2017 157865	2017.5 169 000

Table 6 Exchange Rate, Consumer Price Index (CPI) and Real Monetary Values of Housing Unit Prices

			Real Monetary	Values
Date	Exchange Rate	СРІ	One-Bedroom	Two-Bedroom
2003.01	0.8375	28.2400	26 343.56	28 893.75
2003.07	0.8450	34.2300	23 186.58	25 989.05
2004.01	0.8675	36.4200	23 586.75	26 953.40
2004.07	0.9032	39.3600	23 892.78	27 139.40
2005.01	0.9000	42.5400	23 106.81	26 097.11
2005.07	0.9040	46.2000	22 427.63	25 330.59
2006.01	0.9095	47.9600	22 760.26	25 705.70
2006.07	0.9225	52.1700	21 222.63	23 969.09
2007.01	0.9210	53.2000	20 777.90	23 466.80
2007.07	0.9307	57.4600	20 402.46	24 507.75
2008.01	0.9688	60.0100	21 294.45	26 971.39
2008.07	1.1550	67.9900	23 516.62	30 703.54
2009.01	1.3402	71.9100	27 016.76	36 231.46
2009.07	1.4965	81.9000	26 487.79	38 400.89
2010.01	1.4312	82.5500	25 132.53	39 168.59
2010.07	1.4383	89.6400	24 410.88	36 249.52
2011.01	1.5637	90.0600	27 661.33	39 226.19
2011.07	1.5126	97.1800	26 024.43	39 120.71
2012.01	1.6808	97.9000	30 059.57	47 514.28
2012.07	1.9549	106.4500	32 153.50	53 765.15
2013.01	1.9035	106.5000	31 293.39	55 188.30
2013.07	2.0800	113.6000	33 644.74	59 421.22
2014.01	2.3800	121.2000	37 785.23	66 823.02
2014.07	3.4650	131.0000	52 243.79	94 659.85
2015.01	3.3300	141.1000	47 817.70	88 610.79
2015.07	3.8200	154.5000	51 356.34	97 181.98
2016.01	3.9533	168.0000	50 077.39	96 629.44
2016.07	3.8965	180.3000	47 092.00	92 544.12
2017.01	4.3615	190.3400	51 099.76	102 154.23

Source: www.bog.gov.gh, Accessed: July 2, 2017

2.2 Development of Models

According to (Brooks, 2008) and Boye *et al.* (2017), in developing the MLRM, the possible multicollinearity issues in the independent variables and the assumption that they are normally distributed that are sometimes not properly resolved by researchers were taken care of by log transforming the sample data since the matrix scatter plot revealed that the HUMC were strongly

correlated. Consequently, $\hat{\beta}_{OLS} = (\mathbf{X} \cdot \mathbf{X})^{-1} \mathbf{X} \cdot \mathbf{Y}$ is the deduced model coefficients whose numerical values were determined from sample data. The developed model is $\hat{\mathbf{Y}}_i = (\mathbf{X} \cdot \mathbf{X})^{-1} \mathbf{X} \cdot \mathbf{Y} (\mathbf{x}_i)$ and it was validated by using it to estimate the known HUP in the 15.5th year.

According to Efron and Tibshirani (1994) and Boye *et al.* (2018), in developing the PCRM, multicollinearity which existed among the sample data and could have caused wrong statistical inferences was resolved by log transformation of the data and Principal Component Analysis (PCA) technique which reduced the dimensionality of the predictive variables and accounted for multicollinearity problems was applied. Scree plots were used to determine the minimum number of principal components which accounted for the total variation in the HUP. Subsequently, PCA method was used to derive the model coefficients $\hat{\beta} = \mathbf{V} \hat{\gamma}$ from the sample data. The three principal components which explained 99.37% of the total variation in the one-bedroom and two-bedroom housing units respectively resulted in the following

PCR model
$$\hat{\mathbf{Y}}_i = \beta_0 + \sum_{j=1}^p \hat{\beta}_j \mathbf{x}_i$$
 and it was

validated by using it to estimate the known HUP in the 15.5th year.

According to Montgomery *et al.* (2008) and Boye *et al.* (2019) in developing the TSAM, the nonstationarity among the observed yearly housing unit prices over 15 years which could have caused wrong model coefficients was taken care of by converting the observed yearly housing unit prices over 15 years to yearly real monetary housing unit prices over 15 years. $\mathbf{Y}_t = \boldsymbol{\theta}_0 + \sum_{p=1}^{P} \boldsymbol{\theta}_p \mathbf{Y}_{t-p}$ $+ \sum_{q=1}^{Q} \boldsymbol{\phi}_q \boldsymbol{\varepsilon}_{t-q}$ was the function used to determine the type of Autoregressive Moving Average (ARMA) model the sample data depicts. Consequently, the model parameters were determined using the sample data.

3 Results and Discussion

According to Boye *et al.* (2017), ordinary least squares method was used to derive the MLRM coefficients $\hat{\beta}_i$, and the corresponding equations for one-bedroom and two-bedroom housing units are as follows:

$$\label{eq:hubble} \begin{split} & \log_{e} \; (HUP_{MLRM})_{1\text{-Bed}} = 1.017 - 2.225 \; x \; 10^{\text{-5}} \; x \; CC \; + \\ & 2.512 \; x \; 10^{\text{-6}} \; x \; CS \; + \; 6.016 \; x \; 10^{\text{-4}} \; x \; CIR \; + \; 1.985 \; x \\ & 10^{\text{-4}} \; x \; CR \; + \; 5.694 \; x \; 10^{\text{-4}} \; x \; CP \; \text{-} 7.437 \; x \; 10^{\text{-4}} \; x \; CW \end{split}$$

$$\label{eq:log_e} \begin{split} & log_e \; (HUP_{MLRM})_{2\text{-Bed}} = 5.760 - 7.501 \; x \; 10^{-7} \; x \; CC \; + \\ & 2.935 \; x \; 10^{-6} \; x \; CS \; + \; 1.898 \; x \; 10^{-3} \; x \; CIR \; \; + \; \; 6.695 \; x \\ & 10^{-4} \; x \; CR \; - \; 9.157 \; x \; 10^{-3} \; x \; CP \; + 6.136 \; x \; 10^{-3} \; x \; CW \end{split}$$

According to Boye *et al.* (2018), principal components regression method was used to derive the PCRM coefficients $\hat{\beta}_i$, and the corresponding equations for one-bedroom and two-bedroom housing units are as follows:

$$\begin{split} & \log_{e} \,(HUP_{PCRM})_{1\text{-}Bed} = 10.866658 - 0.2 \; x10^{\text{-}4} \; x \; CC + \\ & 0.1 \; x \; 10^{\text{-}5} x \; CS - 7.18 \; x \; 10^{\text{-}4} \; x \; CIR - 2.37 \; x \; 10^{\text{-}4} \\ & x \; CR + 1.275 \; x \; 10^{\text{-}3} \; x \; CP + 2.48 \; x \; 10^{\text{-}4} \; x \; CW \end{split}$$

 $\begin{array}{l} log_{e} \ (HUP_{PCRM})_{2\text{-}Bed} = 11.231345 \, + \, 0.7 \, x \, 10^{-5} \, x \, \text{CC} \\ - \, 0.4 \, x \, 10^{-5} \, x \, \text{CS} - 1.182 \, x \, 10^{-3} \, x \, \text{CIR} - 1.54 \, x \, 10^{-4} \\ x \, \text{CR} \, + \, 1.633 \, x \, 10^{-3} \, x \, \text{CP} + 4.24 \, x \, 10^{-4} \, x \, \text{CW} \end{array}$

According to Boye *et al.* (2019), time series analysis method was used to derive the TSAM coefficients θ and ϕ , and the corresponding equations for one-bedroom and two-bedroom housing units are as follows:

$$\begin{split} H\hat{U}P_{t1\text{-Bed}} = 440.531\text{-}\ 0.181\ y_{t\text{-}1} + 0.022\ y_{t\text{-}2} + 0.993\\ e_{t\text{-}1} \end{split}$$

and

$$\begin{split} H\hat{U}P_{t2\text{-}Bed} &= 278.474 \text{ - } 0.166 \text{ } y_{t\text{-}1} + 0.035 \text{ } y_{t\text{-}2} \text{ - } 0.062 \\ y_{t\text{-}3} + 0.994 \text{ } e_{t\text{-}1} \end{split}$$

Model Validation

In order to find the best of the three developed models for one-bedroom and two-bedroom housing units, they were used to estimate the known HUP in the 15.5 year for one-bedroom and two-bedroom housing units. Table 7 is a summary of the results. From the results, the percentage absolute deviations, $(\Delta \%)$, of all the estimates of the HUP from the known HUP are between 0.00% and 2.02%, which are considered to be satisfactory. However, the TSAM gave the best estimate of the HUP for one-bedroom and two-bedroom housing units with both $\Delta\%_{TSAM,1-bed}$ and $\Delta\%_{TSAM,2-bed} = 0.00$, meaning the TSAMs are very good and the best.

Table 7 Estimated HUP and Respective Percentage Absolute Deviation ($\Delta \%$) from the Known HUP

Housing Unit	Known HUP (\$)	Estimated HUP (\$) from MLRM	Δ %	Estimated HUP (\$) from PCRM	Δ %	Estimated HUP (\$) from TSAM	Δ %
1-Bedroom	83 600.00	82 530.24	1.27	82 401.32	1.43	83 618.82	0.00
2-Bedroom	169 000.00	172 413.10	2.02	169 022.20	0.00	169 104.99	0.00

4 Conclusions and Recommendation

Table 7 shows a summary result of the study. The percentage absolute deviation (Δ %) of the estimated HUP for MLRM, PCRM and TSAM for one-bedroom and two-bedroom housing units in the 15.5 year are between 0.00% and 2.02%, which are considered to be satisfactory. However, the TSAM gave the best estimate of the HUP for one-bedroom and two-bedroom housing units with percentage absolute deviation of both being 0.00%.

For future research, it is recommended that the developed approach should be improved upon to determine the HUP of other types of housing units since it would give prospective house owners a timely, good idea of the price of a house they intend to purchase.

Acknowledgements

We are thankful to Regimanuel Gray Estate Ltd., an estate development agency in Accra Metropolitan Area for providing the data to make this study a successful one.

References

- Ayan, E. and Erkin, H. C. (2014), 'Hedonic Modeling for a Growing Housing Market: Valuation of Apartments in Complexes', *International Journal of Economics and Finance*, Vol. 6, No. 3, pp. 1- 12.
- Boye, P., Mireku-Gyimah, D. and Okpoti, C. A. (2017), "Multiple Linear Regression Model for Estimating the Price of a Housing Unit", *Ghana Mining Journal*, Vol. 17, No. 2, pp. 66 -77.
- Boye, P., Mireku-Gyimah, D. and Luguterah, A. (2018), "Principal Components Regression Model for Estimating the Price of a Housing Unit", *Ghana Journal of Technology*, Vol. 3, No. 1, pp. 17-23.
- Boye, P., Mireku-Gyimah, D. and Sadiq, H. (2019), "Time Series Analysis Model for Estimating the Price of a Housing Unit", *Ghana Journal of Technology*, Vol. 3, No. 2, pp. 35 - 41.
- Brooks, C. (2008), Introductory Econometrics for Finance, 3rd Edition, Cambridge University Press, pp. 88 - 258.
- Brueggeman, W. B. and Fisher, J. D. (2001), *Real Estate Finance and Investments*, 14th Edition, McGraw-Hill/Irwin, pp. 193 203.
- Chaphalkar, N. B. and Dhatunde, M. (2015), "Real Property Valuation Using Sales Comparison Method and Multiple Regression Analysis", *International Journal of Modern Trends in Engineering and Research*, Vol. 2, No. 8, pp. 304 – 315.

- Cupal, M. (2017), "Sales Comparison Approach Indicating Heterogeneity of Particular Type of Real Estate and Corresponding Valuation Accuracy", Acta Universitatis Agriculturea Mendelianae Brunensis, Vol. 65, 977 – 985.
- Efron, B. and Tibshirani, R. J. (1994), *An Introduction to the Bootstrap*, Chapman and Hall/ CRC, pp. 45 – 49.
- Isakson, H. R. (2002), 'The Linear Algebra of the Sales Comparison Approach', Journal of Real Estate Research, Vol. 24, No. 2, pp. 117 – 128.
- Kahr, J. and Thomsett, M.C. (2005), *Real Estate Market Valuation and Analysis*, John Wiley and Sons, Inc., pp. 59 – 63.
- King, A. T. (1976) 'The Demand for Housing: A Lancastrian Approach', Southern Economic Journal, Vol. 43, No. 2, pp. 1 - 13.
- Merlo, A. M. and Ortalo-Magne', F. (2004), "Bargaining over residential real estate: evidence from England", *Journal of Urban Economics*, Vol. 56, No. 2, pp. 192 – 216.
- Montgomery, D. C., Jennings, C. L. and Kulahci, M. (2008), *Introduction to Time Series*
- Analysis and Forecasting, Hoboken, N.J: Wiley-Interscience (Wiley Series in Probability and Statistics), pp. 73 - 275.

Authors

P. Boye is a Lecturer at the Department of Mathematical Sciences of the University of Mines and Technology (UMaT), Tarkwa, Ghana. He obtained his MSc and BSc degrees from Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana. He also holds a PhD degree in Mathematics from University of Mines and Technology (UMaT), Tarkwa, Ghana.

His research interest is in Applied Mathematics and Statistics.

D. Mireku-Gyimah is a Professor of Mining Engineering and a Consulting Engineer currently working at the University of Mines and Technology, Tarkwa, Ghana. He holds the degrees of MSc from the Moscow Mining Institute, Moscow, Russia, and PhD and DIC from

the Imperial College of Science, Technology and Medicine, London, UK. He is a member of Institute of Materials, Minerals and Mining of UK and also a fellow of Ghana Institution of Engineers and the Ghana Academy of Arts and Science. His research and consultancy works cover Mine Design and Planning, Mine Feasibility Study, Operations Research, Environmental Protection and Corporate Social Responsibility Management.

H. Sadiq is a PhD student at the Department of Statistics of the University of Cape Town, South Africa. He obtained his MSc and BSc degrees from the same University. His research interest is in Bioinformatics.