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Abstract 

Wireless communication systems often require accurate Channel State Information (CSI) at the receiver side. Typically, the 

CSI can be obtained from Channel Impulse Response (CIR). Measurements have shown that the CIR of wideband channels 

are often sparse. To this end, the Least Mean Square (LMS)-based algorithms have been used to estimate the CIR at the 

receiver side, which unfortunately is not able to accurately estimate sparse channels. In this paper, we propose a variable 

step-size l0-norm Normalised LMS (NLMS) algorithm. The step-size is varied with respect to changes in the Mean Square 

Error (MSE), allowing the filter to track changes in the system as well as produce smaller steady-state errors. We present 

simulation results and compare the performance of the new algorithm with the Invariable Step-Size NLMS (ISS-NLMS), 

Variable Step-Size NLMS (VSS-NLMS) and the Invariable Step-Size l0-NLMS (ISS-L0-NLMS) algorithms. The results 

show that the proposed algorithm performs admirably to improve the identification of sparse systems, especially at SNR of 

10 dB. 
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1 Introduction 

 

The need for accurate Channel State Information 

(CSI) at the receiver side of many wideband 

communication systems is of utmost importance. 

Most of these channels have shown to be sparse. 

Adaptive Channel Estimation (ACE) is an effective 

approach for estimating the sparse channels. There 

are many ACE algorithms, such as the Least Mean 

Square (LMS) and the Recursive Least Squares 

(RLS) algorithms (Diniz, 2013; Sayed, 2008; 

Haykin, 2002). However, these algorithms are not 

able to exploit the channel sparsity due to their lack 

of sparse characteristics. In general, sparse 

channels contain very few non-zero coefficients. A 

typical example of sparse channel is shown in Fig. 

1 with a channel length of N = 25 and K = 4 

dominant coefficients. 

 

Step-size is a critical parameter in ACE since it 

controls the estimation performance, convergence 

rate and computational cost (Nunoo et al., 2013). 

Unfortunately, using an Invariable Step-Size (ISS) 

leads to performance loss and/or low convergence 

as well as high computational cost . For this reason, 

the Variable Step-Size NLMS (VSS-NLMS) was 

proposed by Harris et al. (1986) to improve 

estimation performance. In this case, the step-size 

varies as a result of the variation in the Mean 

Square Error (MSE) and the previous step-size 

estimate, thus allowing the adaptive filter to track 

changes in the system as well as produce a small 

steady-state error (Yang et al., 2010). 

 
Fig. 1 A Typical Sparse Multipath Channel 

With A Channel Length Of 25 And 4 

Non-Zero Taps 

 

In recent times, some ACE algorithms have 

exploited channel sparsity to improve the 

identification performance (Gui et al., 2013; Das et 

al., 2011; Taheri and Vorobyov, 2014; Gui and 

Adachi, 2013; Li and Hamamura, 2014a; Li and 

Hamamura, 2014b). These algorithms adopt the 

Compressive Sensing (CS) approach (Donoho, 

2006). To address issues related to variable 

sparsity, Das et al. (2011) proposed the use of an 

adaptive convex combination of LMS-based and 

Zero-Attracting LMS (ZA-LMS) adaptive filters. A 

new reweighted l1-norm penalised LMS algorithm, 

proposed by Taheri and Vorobyov (2014), 

introduces an additional reweighting of the 

Channel Impulse Response (CIR) coefficient 

estimates to promote a sparse solution even more 

and approximate l0-pseudo-norm closer. Gui and 
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Adachi (2013) proposed the L0-LMS, ZA-NLMS, 

reweighted ZA-NLMS (RZA-NLMS), LP-NLMS, 

and L0-NLMS algorithms, which all used ISS 

during adaptation. Li and Hamamura (2014a) also 

proposed the LP Proportionate NLMS (LP-

PNLMS) algorithm to exploit the sparse property 

of broadband multipath wireless communication 

channels. In addition, Li and Hamamura (2014b) 

proposed a smooth approximation l0-norm 

constrained Affine Projection Algorithm (SL0-

APA) to improve the convergence speed and the 

steady-state error of Affine Projection Algorithm 

(APA) for sparse channel estimation. 

 

Of the lot, only Gui et al. (2013) dealt with the 

issue of VSS parameter for adaptation, where the 

VSS-ZA-NLMS algorithm is presented. To the best 

of our knowledge, no other paper has reported on 

the use of sparse VSS-NLMS algorithm to exploit 

the channel sparsity. Unlike algorithms that use l1-

norm sparse penalty, that is the ZA- and RZA-

based algorithms, the l0-norm sparse penalty is a 

good candidate to achieve more accurate channel 

estimates. 

 

In this paper, we present the VSS-based l0-norm 

NLMS algorithm (Nunoo et al., 2014). It presents a 

detailed analysis of the mean performance and the 

steady-state excess MSE. To conclude, we present 

various simulation results to confirm the 

effectiveness of our proposed algorithm. 

 

The rest of the paper is organised as follows. 

Section 2 presents the problem formulation, which 

encompasses an overview of the ISS-NLMS and 

VSS-NLMS algorithms. It continues with a 

derivation of the proposed VSS-based l0-norm 

NLMS algorithm. Lastly, Section 2 concludes with 

an analysis of the mean behaviour and the excess 

steady-state MSE and its computational 

complexity. The analysis takes into consideration 

the effect of the environmental noise to ascertain 

the robustness of the proposed algorithm as 

espoused by Haykin (2002). Simulation results and 

discussions are presented in Section 3. Finally, 

Section 4 presents the conclusions and 

recommendations for future work. 

 

2 Resources and Methods Used 
 

2.1 Problem Formulation 

Let us consider the receiver side of a typical 

communication system, which is represented by the 

system identification system like the one shown in 

Fig. 2. Given that, d(k) is the desired signal of an 

adaptive filter, then: 

 ( ) ( ) ( )Td k k n k= +x h   (1) 

where x(k) = [x0(k) x1(k) … xL-1(k)]T is the input 

signal vector at iteration k, h is the sparse channel 

vector of the communication system that we wish 

to estimate, n(k) is the system noise signal, which is 

a zero-mean uncorrelated sequence that is 

independent of x(k), y(k)=xT(k)w(k),  w(k) = [w0(k) 

w1(k) … wL-1(k)]T is the filter weight coefficient 

vector, and [.]T denotes vector transpose. For 

simplicity, the filter is assumed to have the same 

structure as the unknown system. Thus, the a priori 

estimation error e(k) is also given by: 

 ( ) ( ) ( ) ( )Te k d k k k= −x w  (2) 

Unknown FIR Channel

h

Estimated FIR Channel

w(k)

Adaptive Algorithm

Input Signal

x(k) d′(k)

Additive Noise

n(k)

+

+

–

+

e(k)

d(k)

Adaptive Channel Estimation

y(k)

 

Fig. 2 A Typical System Identification Block 

Diagram 

 

2.1.1 ISS-NLMS Algorithm  

The LMS algorithm is sensitive to the scaling of its 

input. This makes it very hard, if not unfeasible, to 

choose a step-size that guarantees stability of the 

algorithm (Haykin, 2002). The NLMS algorithm 

solves this problem by normalising the adaptive 

error update section with the input power. Thus, the 

NLMS algorithm is described by the equation: 

 ( ) ( )
( ) ( )

( ) ( )
1

T

e k k
k k

k k



+ = +
+

x
w w

x x
 (3) 

where ε is a regulation parameter, which is 

included in order to avoid large step sizes when 

xT(k)x(k) becomes small and µ is the invariable 

(fixed) step-size parameter. If the primary objective 

of the adaptation is to achieve a faster convergence, 

then a variable step size can be used. 

 

2.1.2 VSS-NLMS Algorithm 

 

The bedrock of all VSS-NLMS algorithms is to 

develop a means of varying the step-size parameter. 

The Kwong and Johnston VSS-LMS algorithm 

(Kwong and Johnston, 1992) makes use of the 

squared instantaneous estimation error to update 

the step-size: 
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 ( ) ( ) ( )21k k e k   + = +   (4) 

where 0<α<1, γ>0 and 

 

( )

( )

( )

( )
max max

min min

    if 1

1        if 1

1 otherwise           

k

k k

k

  

   



 + 


+ = + 
  +

  (5) 

To employ the use of VSS in the NLMS 

algorithms, from (3), the normalised version of the 

coefficient update equation is given as: 

 ( ) ( ) ( )
( ) ( )

( ) ( )
1 1

T

e k k
k k k

k k



+ = + +

+

x
w w

x x
  (6) 

where μ(k+1) is the VSS parameter. 

 

2.2 Proposed VSS-Based l0-Norm NLMS 

Algorithm 

The NLMS-based adaptive sparse channel 

estimation algorithm possesses the ability to 

mitigate the scaling interference of the training 

signal. This effect is due to the fact that NLMS-

based methods estimate the sparse channel by 

normalising the power of the training signal x(k). 

The basic principle of CS-based sparse adaptive 

filtering is the introduction of an appropriate sparse 

penalty which can be generalised as follows: 

( ) ( )  

 

1   

 

k k Adaptive Error Update

Sparse Penalty

+ = +

+

w w

  (7) 

Consider l0-norm penalty on the LMS cost function 

which forces w(k) to approach zero. The cost 

function is given by: 

 ( ) ( ) ( )
0

2

0

1

2 l
k e k k = + w  (8) 

where 
0

0l   is a regulation parameter for 

balancing the penalty and estimation error and 

( )
0

kw  is the l0-norm sparse penalty function. 

Since the l0-norm is a Non-Polynomial (NP) hard 

problem (Gu et al., 2009), in order to reduce the 

computational complexity, we replace it with an 

approximate continuous function: 

 ( ) ( )( )
1

0
0

1 i
N w k

i

k e
− −

=

 −w  (9) 

where β is a regulation parameter. Therefore, the 

cost function in (8) can be rewritten as: 

 ( ) ( ) ( )( )0

1
2

0

1
1

2

i
N

w k

l
i

k e k e


 
−

−

=

= + −  (10) 

From the first order Taylor series expansion of the 

exponential functions, the exponential function in 

(10) can be simplified as: 

( ) ( ) ( )
1

1    when 

0                 otherwise         

iw k i iw k w k
e

 


−


− 

 



 
(11)

 

The update equation of the l0-norm LMS is given 

as: 

 

( ) ( ) ( ) ( )

( ) ( )

0

1

sgn
k

l

k k e k k

k e




 
−

+ = +

−   
w

w w x

w  (12) 

where 
0 0l l =  and ( )sgn   is a component-wise 

sign function defined as: 

 ( )
         0         

sgn

0           otherwise

x
x

xx




= 



 (13) 

Unfortunately, the exponential function in (12) will 

also cause high computational complexity. To 

further reduce the complexity, an approximation 

function ( )J k  w  is introduced. Thus, the l0-

norm LMS sparse ACE is given as: 

( ) ( ) ( ) ( ) ( )
0

1 lk k e k k J k + = + −   w w x w   (14) 

with ( )J k  w  defined as: 

( )
( ) ( ) ( )2 1

2 2 sgn        when 

0                                            otherwise        

k k k
J k

 



−    =   




w w w
w   (15) 

for all  1,  2,  ...,  i N . 

Based on the ISS-based l0-norm LMS algorithm in 

(14), that of the NLMS algorithm is also given as: 

( ) ( )
( ) ( )

( ) ( )
( )

0
1 lT

e k k
k k J k

k k
 


+ = + −   +

x
w w w

x x
  (16) 

Thus to further improve the estimation 

performance of (16), we propose the use of variable 

step-size as inspirited in (Kwong and Johnston, 

1992). Hence from (16): 

( ) ( ) ( )
( ) ( )

( ) ( )

( )
0

1 1
T

l

e k k
k k k

k k

J k






+ = + +
+

−   

x
w w

x x

w  (17) 

where ( )1k +  is the VSS and defined in (4) and 

(5). The VSS-l0-NLMS algorithm is as in 

Algorithm 1. A sufficient condition for mean 

coefficient vector convergence of the proposed 

algorithm is given as (Kwong and Johnston, 1992): 
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 ( )
max

2
0 E k


     (18) 

where 
max  is the maximum eigenvalue of the input 

signal autocorrelation matrix ( ) ( )E TR k k =  x x . 

The proposed algorithm performs better than the 

ISS-NLMS, VSS-NLMS and ISS-l0-NLMS and 

other related sparsity-aware algorithms because of 

its utilisation of the l0-norm. 

Algorithm 1: Summary of the VSS-l0-NLMS 

Algorithm 

 
 

2.3 Performance Analysis 

In this section, we present a performance analysis 

of the proposed VSS-l0-NLMS algorithm. We 

discuss the performance analysis in three thematic 

areas, viz. mean behaviour analysis, steady-state 

excess MSE analysis and computational 

complexity analysis. To simplify the analysis, we 

adopt the following assumptions: 

a. the input signal ( )kx  is a stationary ergodic 

process which is Gaussian distributed with 

zero mean and autocorrelation 

( ) ( )E T k k =  R x x , 

b. the noise signal ( )n k  is white Gaussian 

distributed with zero mean and variance 2

n , 

and 

c. ( )kw , ( )kx  and ( )n k  are statistically 

independent of each other. 

2.3.1 Mean Behaviour 

We adopt the energy conservation approach 

(Sayed, 2008) to obtain the theoretical expression 

for the MSE of the VSS-l0-NLMS algorithm. From 

(1) and (2), we obtain: 

 ( ) ( ) ( ) ( )Te k k k n k= − +  x h w   (19) 

Subtract h from both sides of the VSS-l0-NLMS 

update equation given in (17), then the 

misalignment vector, ( ) ( )1 1k k + = − +h w , after 

substituting (19) in the ensuing equation, can be 

expressed as: 

( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( )

( )
0

1

1

T

T

l

k k

k k n k k
k

k k

J k






 + = 

   +  − +
+  

+   

x x

x x

w  (20) 

Thus, 

( ) ( )
( ) ( )

( ) ( )
( )

( )
( ) ( )

( ) ( )

( )
0

1 1

1

T

N T

T

l

k k
k k k

k k

k n k
k

k k

J k









   
 + = − +   

+    

 
− +  

+  

+   

x x
I

x x

x

x x

w  (21) 

where NI  is the Nth-order identity matrix. Taking 

the expectation of both sides of (21): 

( ) ( )

( )
( ) ( )

( ) ( )
( )

( )
( ) ( )

( ) ( )

( ) 
0

E 1 E

E 1 E E

E 1 E

E

T

T

T

l

k k

k k
k k

k k

k n k
k

k k

J k









 + =       

 
− +        +  

 
− +     +  

+   

x x

x x

x

x x

w  (22) 

Employing Assumption 3 that ( )n k  and ( )kx  are 

statistically independent, then 

( ) ( ) ( ) ( ) E 0Tk n k k k + = x x x . Thus, (22) 

can be simplified as: 

( ) ( )

( )
( ) ( )

( ) ( )

( ) ( ) 
0

E 1 E

E 1 E

E E

T

T

l

k k

k k
k

k k

k J k






 + =       

 
− +     +  

  +      

x x

x x

w  (23) 

But from (15), when ( ) 1iw k  , then: 

 

( )  ( )

( ) 

2E 2 E

2 E sgn

J k k

k





=      

−   

w w

w  (24) 

 

Initializations (typical values) 

( ) ( )  0 0 0 0
T

= =x w  

Choose constants:  ,  , 
min , 

max ,  , 
0l

 , and  . 

Processing and adaptations 

For k = 0, 1, 2, … 

( ) ( ) ( ) ( )1 1k k k n N= − − +  x x x x   

( ) ( ) ( ) ( )Te k d k k k= −x w  

( ) ( ) ( )21k k e k   + = +  

( )

( )

( )

( )
max max

min min

    if 1

1        if 1

1 otherwise              

k

k k

k

  

   



 + 


+ = + 
  +

 

( )
( ) ( ) ( )2 1

2 2 sgn        when 

0                                            otherwise        

k k k
J k

 



−    =   




w w w
w  

( ) ( )
( ) ( )

( ) ( )
( )

0
1 lT

e k k
k k J k

k k
 


+ = + −   +

x
w w w

x x
 

End 
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Otherwise, 

 ( ) E 0J k =  w   (25) 

Note that under steady-state conditions, previous 

works on sparse LMS algorithms (Chen et al., 

2009; Su et al., 2012) have shown that: 

 ( )  ( )E sgn sgnk   w w   (26) 

Therefore: 

( )  ( ) ( )2E 2 E 2 sgnJ k k = −      w w w  (27) 

Hence, (23) can be rewritten as: 

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) 
0

2

E 1 E 1 E

E 2 E 2 sgn

T

N T

l

k k
k k

k k

k k




  

   
 + = − +          +    

  + −      

x x
I

x x

w w   (28) 

With reference to Assumption 1 and given that 

( ) ( )E 1 1k k + = +   , then (28) is rewritten as: 

( ) ( )
( ) ( )

( ) ( ) ( ) 
0

2

1
E 1 1 E

E 2 E 2 sgn

N T

l

k k
k k

k k




  

   
 + = − +      +    

  + −      

I R
x x

w w   (29) 

The stability condition of the VSS-l0-NLMS 

algorithm is independent of the parameter 
0l

 . 

Given that the estimated channel vector ( )kw  

converges when n→ , then (29) is rewritten as: 

( ) ( )
( ) ( )

( )   ( ) 
0

2

1
E 1 E

E 2 E 2 sgn

N T

l

k
k k




  

   
  = − +      +    

   + −  

I R
x x

h h  (30) 

Hence, from (30), assuming 

( ) ( ) E 1 T k k  + =  xx
x x , the optimum solution of 

the VSS-l0-NLMS algorithm is given as: 

( )
( )

  ( ) 0

1

2E 2 E 2 sgn
l

 
 

−

 = + −   
xx

R
h h h h   (31) 

Thus, the vector ( ) 
0

El J k   w  is bounded by 

0l
− 1  and 

0l
 1 , where 1  is a vector of 1’s. 

Therefore ( )E k    converges if the maximal 

eigenvalue of ( )1k− +  I R  is less than 1, 

which is satisfied by (18). Since 

( ) ( )E E 1k k=  + +      w h , then ( )E k  w  will 

also converge with the limiting vector given in  

(31). 

2.3.2 Steady-State Excess MSE Analysis 

Consider the linear model in (1) for the received 

signal, the steady-state MSE is defined as: 

 ( )
2

MSE lim E
k

e k
→

 =
 

  (32) 

Firstly, multiplying both sides of (17) by ( )kx , 

then: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( )

0

1 1T

T

T

lT

k k k k k

e k k k
k J k

k k






+ = + +

 −   +

x w x w

x x
x w

x x
  (33) 

Furthermore, 

( ) ( ) ( ) ( ) ( ) ( )1 1k k k k k e k+ = + +x w x w  (34) 

In addition, define the a posteriori error vector, 

( )pe k  and the a priori error vector, ( )ae k  as: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1p

a

e k k k k

e k k k k

= − +

= −

x h x w

x h x w
  (35) 

Combining (34) and (35), then: 

 ( ) ( ) ( ) ( )1p ae k e k k e k= − +   (36) 

In addition, using (1), (2) and (35), it can easily be 

shown that: 

 ( ) ( ) ( )ae k e k n k= +   (37) 

Substituting (37) into (36), then: 

 ( ) ( ) ( ) ( )1p Ne k k e k n k= − + −  I   (38) 

From (36), ( )e k  is given as: 

 ( )
( )

( ) ( )
1

1
a pe k e k e k

k
 = − +

  (39) 

Substituting (39) into (17), then: 

 

( ) ( )
( ) ( ) ( )

( ) ( )

( )
0

1
a p

T

l

e k e k k
k k

k k

J k





 − 
+ = +

+

−   

x
w w

x x

w   (40) 

Taking the expectation of both sides of (40), then: 
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( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) 
0

E 1 E E

E

E

a

T

p

T

l

e k k
k k

k k

e k k

k k

J w k







 
+ = +         +  

 
−  

+  

−   

x
w w

x x

x

x x

(41) 

Given that at steady-state, as k → : 

 ( ) ( )
2 2

E 1 Ek k   + 
   

w w   (42) 

and assuming that ( )ae k , ( )pe k  and ( )kw  are 

statistically independent of ( )kx , then: 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) 0

2 2

2
2

E E

E

T T T T

p p a a

T T

l

e k k k e k e k k k e k

k k k k

J k

 



   
   =
   + +
   

−   

x x x x

x x x x

w   (43) 

Substituting (38) into the Left-Hand Side (LHS) of 

(43), then: 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

2

2

2

2

1
LHS E

1
E

1
E

E

T T

N

T

T T

N

T

T T

N

T

T T

T

k e k k k e k

k k

k n k k k e k

k k

k e k k k n k

k k

n k k k n k

k k















 − +   
=  

+  

 − +   
−  

+  

 − +   
−  

+  

 
 

+  
+  

I x x

x x

I x x

x x

I x x

x x

x x

x x

 (44) 

Similarly, substituting (37) into the Right-Hand 

Side (RHS) of (43), then: 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) 0

2

2

2

2

2
2

RHS E

E

E

E

E

T T

T

T T

T

T T

T

T T

T

l

e k k k e k

k k

n k k k e k

k k

e k k k n k

k k

n k k k n k

k k

J k











 
 

=  
+  

 
 

−  
+  

 
 

−  
+  

 
 

+  
+  

−   

x x

x x

x x

x x

x x

x x

x x

x x

w   (45) 

Combine (44) and (45): 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( )

( ) 0

2

2

2

2

2
2

E 2 1 1

E 1

+ E 1

E

T T

T

T T

T

T T

T

l

e k k k e k
k k

k k

n k k k e k
k

k k

e k k k n k
k

k k

J k

 










 
  + − +   +  

 
 

= + 
+  

 
 

+ 
+  

+   

x x

x x

x x

x x

x x

x x

w   (46) 

With reference to Assumption 3 that the additive 

noise ( )n k  is statistically independent of the input 

signal ( )kx , then (46) can be simplified as: 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) 0

2

2

2

2
2

1
E

E 2 1

E

1

E 2 1 1

E

T T

T
N

T T

T

l

e k k k e k

kk k

n k k k n k

k k

k k

J k





 



 
 

= 
− + +    

 
 

  
+  

+
 + − +
 

   

x x

Ix x

x x

x x

w  (47) 

Hence, from (47), it can be shown that the MSE of 

the VSS-l0-NLMS algorithm is given as: 

( ) ( )
( )

( ) ( )

( ) 0

2

2

2
2

E
E 2 1

1

E 2 1 1

E

T n

N

l

e k e k
k

k k

J k





  



  =  − +  

+
 + − +
 

   

xx

I

w   (48) 

where ( ) ( ) ( ) ( ) 
2

E T Tk k k k  = + xx
x x x x . 

2.3.3 Computational Complexity 

Considering the computational complexity of the 

VSS-l0-NLMS algorithm in terms of the number of 

additions and multiplications required relative to 

the ISS-l0-NLMS algorithm, an additional 

complexity is introduced by the VSS-l0-NLMS 

algorithm as compared to the ISS-l0-NLMS 

algorithm. This arises from the computation of the 

VSS parameter given in (4). Therefore, the 
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additional computations that (4) requires are 

2 1N +  multiplications and 1N −  additions. 

3 Results and Discussion 

This section discusses computer simulation results 

performed to verify the theory presented in the 

previous section as well as experimentally compare 

the performance of the VSS-l0-NLMS algorithm 

with the ISS-NLMS, VSS-NLMS and ISS-l0-

NLMS algorithms. Each simulation result is the 

steady-state statistical average of 200 runs, with 

3000 iterations in each run. The received Signal-to-

Noise Ratio (SNR) is defined as ( )2

010log nE  , 

where 
0 1E =  is the received signal power and the 

noise power is given by 2 SNR 1010n −= . 

The channel estimators are evaluated by averaging 

the mean square error (MSE) which is defined as: 

 ( ) ( )
2

2
ˆMSE Ek k = −    

w w w   (49) 

where w and ( )ˆ kw  are the actual and the kth 

iterative channel update, respectively, and 
2
  is 

the Euclidean norm operator. 

 

3.1 Experiment 1 

In this experiment, a channel with length of 25 and 

with the number of dominant taps set to K = 1 and 

K = 4 is used. We compared the performance of the 

algorithms for three separate SNR values: 10, 20, 

and 30 dB. Other simulation parameters of 

importance are given in Tables 1 and 2. The 

algorithm variables, for this experiment when K = 

1, having varying values, as indicated in Table 1, at 

each simulated SNR investigated is given in Table 

2. In the case of K = 4, only the regulation 

parameter 
0l

  varies as the SNR changes. The 

values used in this case are, 5×10-4 when SNR is 10 

dB and 5×10-5 when the SNR is 20 dB or 30 dB. It 

is worthy of note that the sparsity-aware adaptive 

algorithms provide optimal performance at higher 

SNR values. 

 

 

 

 

 

 

 

Table 1 Parameters Values Used For Simulating 

all the SNR Values Investigated 

Algorithm 
Sparsity Level 

K = 1 K = 4 

ISS-NLMS 
µ 0.8 0.8 

ε 5×10-5 5×10-5 

VSS-NLMS 

µ(0) Varying 0.3 

µmin Varying 0 

µmax Varying 0.3 

ε 5×10-5 5×10-5 

α 0.99808 0.99808 

γ Varying 0.9 

ISS-l0-NLMS 

µ 0.8 0.8 

ε 5×10-5 5×10-5 

β Varying 0.9999 

ρ Varying Varying 

VSS-l0-

NLMS 

µ(0) Varying 0.3 

µmin 0 0 

µmax Varying 0.3 

ε 5×10-5 5×10-5 

α 0.99808 0.99808 

γ Varying 0.9 

β Varying 0.9999 

ρ Varying Varying 

Table 2 Simulation Parameters of the Proposed 

Vss-Ɩ0-Nlms Algorithm and other 

Comparing Algorithms when K = 1 
 

Algorithm 
SNR Values (dB) 

10 20 30 

VSS-NLMS 

µ(0) 0.3 0.3 0.7 

µmin 0 0 0.5 

µmax 0.3 0.3 0.7 

γ 0.01 0.9 0.9 

ISS-l0-NLMS 
β 0.09 0.09 0.9999 

ρ 0.01 0.01 5×10-4 

VSS-l0-NLMS 

µ(0) 0.5 0.2 1 

µmax 0.5 0.2 1 

γ 0.01 0.9 0.9 

β 0.09 0.09 0.9999 

ρ 0.01 0.004 5×10-4 

Figs. 3-8 show the average MSE to number of 

iterations for sparsity of K = 1 and K = 4 and 

different SNR regimes. At an SNR of 10 dB, in 

Fig. 3 and 4, the VSS algorithms provided the best 

performance at when K = 1 and K = 4. There is 

significant reduction in the convergence when K = 

4. When the SNR is increased to 20 dB, again the 

VSS algorithms performed better with the sparsity-

aware VSS algorithm providing the best 

performance which confirms the theory that such 

algorithms should provide optimal performance at 

higher SNR values as seen in Fig. 5 and 6. Here 

again, the convergence is suboptimal compared to 

the ISS algorithms when K = 4 with the VSS-l0-

NLMS algorithm providing the best convergence 

result when K = 1. In Fig. 7 and 8, when the SNR is 

30 dB, the VSS-l0-NLMS algorithm performs 
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better than the other algorithms with an average 

MSE of about -38 dB in both scenarios. 

Significantly, the ISS-l0-NLMS algorithm 

performed better than the ISS-NLMS algorithm 

when K = 1. 

 
Fig. 3 Mse Performance at an SNR of 10 Db For 

When K = 1 

 
Fig. 4 MSE performance at an SNR of 10 dB for 

when K = 4 

 
Fig. 5 MSE performance at an SNR of 20 dB for 

when K = 1 

 

Fig. 6 MSE Performance at an SNR of 20 dB for 

when K = 4 

 
Fig. 7 MSE performance at an SNR of 30 dB for 

when K = 1 

 

Fig. 8 Mse Performance at An SNR Of 30 Db 

For When K = 4 

 

3.2 Experiment 2 

In this experiment, we consider a sparse multipath 

communication channel, typical of UWB channels, 

adopted from (Carbonelli et al., 2007), with a 

channel length of 30 having 8 dominant taps as 

shown in Fig. 9. Here also, several simulations are 

conducted for this analysis we compared the 

performance of the algorithms for three separate 

SNR values: 10, 20 and 30 dB. The simulation 

parameters used in this experiment are listed as 

follows: 0.8 = , ( )0 1 = , min 0 = , max 0.5 = , 

0.99808 = , 0.9 = , 
55 10 −=  ,  0.9999 =  

and 55 10 −=  . Other than these settings, others 

are same as described in Experiment 1. 

 
Fig. 9 a Typical Sparse Multipath Channel 

Impulse Response 
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Figures 10-12 show the average MSE to number of 

iterations for different SNR regimes. In all three 

scenarios under consideration, the VSS algorithms 

provided the best performance. The results show 

significant reduction in the convergence as the 

SNR increases. 

 
Fig. 10 MSE Performance when SNR = 10 dB 

 
Fig. 11 MSE Performance when SNR = 20 dB. 

 

4 Conclusions and Recommendation 

In this paper, we proposed the VSS-l0-NLMS 

algorithm for sparse multipath channel estimation. 

This research is motivated by the properties of the 

step-size parameter in controlling the estimation 

accuracy, convergence speed and computational 

complexity. The algorithm estimates the sparseness 

of the impulse response. Computer simulations 

show that in high sparsity scenarios, the proposed 

algorithm exhibits faster convergence and better 

performance. As future work, we will consider the 

method of partial updating coefficients to help 

reduce the computational complexity, which in 

effect will reduce the computational load as well. 

 
Fig. 12 MSE Performance when SNR = 30 dB 

 

References 
 

Carbonelli, C., Vedantam, S. and Mitra, U. (2007), 

"Sparse Channel Estimation with Zero Tap 

Detection", IEEE Transactions on Wireless 

Communications, Vol. 6, No. 5, pp. 1743–1763. 

Chen, Y., Gu, Y. and Hero, A. O. (2009), "Sparse 

LMS for System Identification", 2009 IEEE 

International Conference on Acoustics, Speech 

and Signal Processing, April 2009 IEEE, 

Taipei, pp. 3125–3128. 

Das, B. K., Chakraborty, M. and Banerjee, S. 

(2011), "Adaptive Identification of Sparse 

Systems with Variable Sparsity", 2011 IEEE 

International Symposium of Circuits and 

Systems (ISCAS), May 2011 IEEE, Rio de 

Janeiro, Brazil, pp. 1267–1270. 

Diniz, P. S. R. (2013), Adaptive Filtering, Fourth 

Edi., Springer US, Boston, MA. 

Donoho, D. L. (2006), "Compressed Sensing", 

IEEE Transactions on Information Theory, Vol. 

52, No. 4, pp.1289–1306. 

Gu, Y., Jin, J. and Mei, S. (2009), "l0 Norm 

Constraint LMS Algorithm for Sparse System 

Identification", IEEE Signal Processing Letters, 

Vol. 16, No. 9, pp. 774–777. 

Gui, G. and Adachi, F. (2013), "Improved Least 

Mean Square Algorithm with Application to 

Adaptive Sparse Channel Estimation", 

EURASIP Journal on Wireless Communications 

and Networking, Vol. 2013, No. 1, pp. 204. 

Gui, G., Kumagai, S., Mehbodniya, A. and Adachi, 

F. (2013), "Variable is Good: Adaptive Sparse 

Channel Estimation Using VSS-ZA-NLMS 

Algorithm", 2013 International Conference on 

Wireless Communications and Signal 

Processing. October 2013 IEEE, pp. 1–5. 

Harris, R. W., Chabries, D. M. and Bishop, F. A. 

(1986), "A Variable Step (VS) Adaptive Filter 

Algorithm", IEEE Transactions on Acoustics, 

Speech, and Signal Processing, Vol. ASSP-34, 

No. 2, pp. 306–316. 

Haykin, S. (2002), Adaptive Filter Theory, Fourth 

Edi., Prentice-Hall, Inc., New Jersey. 

Kwong, R. H. and Johnston, E. W. (1992), "A 

Variable Step Size LMS Algorithm", IEEE 



16                                     GJT  Vol. 4, No. 1, September, 2019 

Transactions on Signal Processing, Vol. 40, 

No. 7, pp. 1633–1642. 

Li, Y. and Hamamura, M. (2014a), "An Improved 

Proportionate Normalized Least-Mean-Square 

Algorithm for Broadband Multipath Channel 

Estimation", The Scientific World Journal, Vol. 

2014, pp. 1–9. 

Li, Y. and Hamamura, M. (2014b), "Smooth 

Approximation l(0)-Norm Constrained Affine 

Projection Algorithm and its Applications in 

Sparse Channel Estimation", The Scientific 

World Journal, Vol. 2014, pp.1–15. 

Nunoo, S., Chude-Okonkwo, U. A. K. and Ngah, 

R. (2013), "Performance of LMS, NLMS and 

LMF algorithms in tracking time-varying UWB 

channels", 2013 IEEE International Conference 

on Signal and Image Processing Applications. 

October 2013 IEEE, Melaka, Malaysia, pp. 

312–316. 

Nunoo, S., Chude-Okonkwo, U. A. K., Ngah, R. 

and Zahedi, Y. K. (2014), "Variable Step-Size 

l0-Norm NLMS Algorithm for Sparse Channel 

Estimation", 2014 IEEE Asia Pacific 

Conference on Wireless and Mobile. August 

2014 IEEE, Bali, Indonesia, pp. 88–91. 

Sayed, A. H. (2008), Adaptive Filters, John Wiley 

& Sons, Inc., Hoboken, NJ, USA. 

Su, G., Jin, J., Gu, Y. and Wang, J. (2012), 

"Performance Analysis of l0 Norm Constraint 

Least Mean Square Algorithm", IEEE 

Transactions on Signal Processing, Vol. 60, 

No. 5, pp. 2223–2235. 

Taheri, O. and Vorobyov, S. A. (2014), 

"Reweighted l1-Norm Penalized LMS for 

Sparse Channel Estimation and its Analysis", 

Signal Processing, Vol. 104, pp. 70–79. 

Yang, Y., Zhao, J., Wang, Z. and Yan, Y. (2010), 

"An Novel Variable Step Size LMS Adaptive 

Filtering Algorithm Based on Hyperbolic 

Tangent Function", 2010 International 

Conference on Computer Application and 

System Modeling (ICCASM 2010). 2010 IEEE, 

Taiyuan, pp. V14-233-V14-236. 

 

 

Authors 

 
Solomon Nunoo is currently a Senior 
Lecturer at the Department of Electrical 

and Electronic Engineering, UMaT He 

holds  BSc degree in electrical engineering 
from Western University College of 

Kwame Nkrumah University of Science 

and Technology, now University of Mines 
and Technology (UMaT), the MPhil degree in electrical and 

electronic engineering, and the PhD in electrical engineering 

from Universiti Teknologi Malaysia. He. His research interest is 
in signal processing for wireless communications with emphasis 

on adaptive filtering and compressive sampling. 

 
Uche A. K. Chude-Okonkwo is currently 

a Senior Research Fellow with the 

Department of Electrical, Electronic and 
Computer Engineering, University of 

Pretoria, South Africa. He holds PhD 

degree in Electrical Engineering from 
Universiti Teknologi Malaysia, His 

current research interests include molecular communication 

applied to advanced healthcare delivery, signal processing, 
wireless sensor network, wireless communication, and systems 

biology. 
 

Razali Ngah is currently an Associate 

Professor at Wireless Communication 
Centre (WCC), Faculty of Electrical 

Engineering, Universiti Teknologi 

Malaysia (UTM) Skudai. He holds BSc 
degree in Electrical Engineering 

(Communication) from Universiti 

Teknologi Malaysia, Skudai, MSc in RF Communication 
Engineering from University of Bradford, UK and PhD in 

Photonics from University of Northumbria, UK. His research 

interests are Mobile Radio Propagation, Antenna and RF design, 
Photonics Network, Wireless Communication Systems and 

Radio over Fiber (RoF). 
 

 


