
24                                      GGJJTT  Vol. 2, No. 2, March, 2018 

Asset Portfolio Optimisation of Some Selected Equities Using 

Geometric Mean and Semivariance* 
1 
E. N. Wiah,

 1 
B. Odoi and 

2
K. O. Antwi 

1University of Mines and Technology, Box 237, Tarkwa, Ghana 
2
Ghana Manganese Company Limited 

 
Wiah, E. N., Odoi, B., and Antwi, K. O. (2018), “Asset Portfolio Optimisation of Some Selected Equities Using 

Geometric Mean and Semivariance”, Ghana Journal of Technology, Vol. 2, No. 2, pp. 24 - 33. 
 

 

Abstract 

The oldest question on the stock market probably is which portfolio is the best. Fund Managers answer this question using 

arithmetic mean as a measure of returns on equity and the variance as an appropriate measure of equity risk. However, these 

two measures have a setback. In this research, we employ the geometric mean and semivariance in an optimal portfolio 

formation of some selected equities on the Ghana Stock Exchange. A historical data of the best six performing equities in the 

Ghana Stock exchange in the year 2015 was obtained from the Ghana stock exchange to measure the risk in equity selection. 

The methods used were geometric mean of the returns on the equity prices, their semivariance, variance, correlation, utility 

function. Maximisation function and the minimisation function of the semivariance and the sharpe ratio. The results revealed 

that the equities with the highest Sharpe Ratio were CAL Bank Limited (CAL), Ghana Commercial Bank (GCB), and 

Enterprise Group Limited (EGL). A minimum variance portfolio of 0.4 GCB, 0.1 CAL, and 0.5 EGL, with portfolio risk of 

0.00072 and portfolio returns of 0.02148 with a Sharpe Ratio 0.72758. Efficient frontier portfolio of 0.5 GCB, 0.1 CAL and 

0.4 EGL,0.5 GCB, 0.2 CAL and 0.3 EGL,0.5 GCB, 0.3 CAL and 0.2 EGL, 0.5 GCB, 0.4 CAL and 0.1 EGL were obtained. 
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1 Introduction 

 

The fundamental goal of portfolio theory is the 

optimal allocation of investments between different 

equities. Mean Variance Optimization (MVO) is a 

quantitative tool, which enables allocation of 

investment by considering tradeoff between risk 

and return.  

 

“The rule that the investor does (or should) 

maximize discounted expected, or anticipated, 

returns is rejected both as a hypothesis to explain, 

and as a maximum to guide investment behavior. 

We next consider the rule that the investor does (or 

should) consider expected return a desirable thing 

and variance of return an undesirable thing. This 

rule has many sound points, both as a maxim for, 

and hypothesis about investment behavior. 

 

In our quest to achieve an optimal portfolio, 

investors may apply two main management 

approaches, the Passive or Active Portfolio 

management. 

 

The investor’s main purpose in passive portfolio 

management is to replicate a given financial index 

as much as possible. The implicit assumption 

therefore is financial markets are efficient, 

meaning no financial strategy can regularly 

outperform their performance. A private investor 

may choose the Passive approach when the market 

is presumed to be bullish with relatively high 

probability. If the financial market is not efficient, 

a better asset allocation where financial assets are 

first selected and their weightings optimized, this 

process is known as active portfolio management. 

This process includes researching ideas, 

forecasting exceptional returns, constructing and 

implementing portfolios, and observing and 

refining their performance (Prigent, 2007). 

 

Markowitz mean–variance efficiency is the classic 

paradigm of modern finance for efficiently 

allocating scarce resources among risky investment 

instrument. For a given estimates of the expected 

return, standard deviation or variance, and 

correlation of return for a set of assets, mean – 

variance efficiency provides investor with 

prescription for optimal allocation of resources. 

The variance or standard deviation defines the 

portfolio risk whiles the mean is the expected 

portfolio returns. The mean – variance efficiency is 

the criterion of choice for defining optimal 

portfolio structure and for rationalising the value of 

diversification. 

 

Many investment situations may use mean – 

variance efficiency for wealth allocation. An 

international equity manager may want to find 

optimal asset allocations among international 

equity markets based on market index historic 

returns. A plan sponsor may want to find an 

optimal long-term investment policy for allocating 

domestic and foreign debt, equities and other asset 

classes. A domestic equity manager may want to 

find the optimal equity portfolio based on forecast 

of return and estimated risk. Mean–variance 

optimisation is sufficiently flexible to consider 

various trading cost, institutional and client 

*Manuscript received December 19, 2017 

 Revised version accepted March 20, 2018 



25                                      GGJJTT  Vol. 2, No. 2, March, 2018 

constraints, and desired levels of risk. Mean– 

variance efficiency serves the standard 

optimisation framework for modern asset 

management (Michaud and Michaud, 2008). 

 

Most asset portfolio optimization study employs 

the arithmetic mean of the returns of an equity as 

the expected returns of the equity and the variance 

of the returns as the risk of the equity. Risk – 

Return Analysis of Optimal Portfolio using Sharpe 

ratio employs the arithmetic mean of equities as 

their expected returns and variance as the risk 

(Boamah, 2012). 

 

The arithmetic mean has dampened effect on high 

and low values in data set. The variance as a 

measure of risk is valid only when: 

(i) The underlying distribution of the returns is 

symmetric. 

 

(ii) The underlying distribution of the returns is 

normal. 

Both properties above are seriously questioned by 

empirical evidence on the subject. Portfolio risk 

and portfolio returns calculated based on arithmetic 

mean and variance misrepresent the true return and 

risk profile of the portfolio. The geometric mean 

and semivariance are employed to optimise a 

portfolio of selected equities on the Ghana Stock 

Exchange to arrive at a true position of risk for any 

given returns of a portfolio. 
 

The main purpose of this paper was to form a 

diversified portfolio of selected equities on the 

Ghana Stock Exchange Mining, construct an 

optimal portfolio with the three highest Sharpe 

ratio equities and determine some efficient frontiers 

for the highest Sharpe ratio equities. 

 

1.1 Literature Review 
 

Modern portfolio theory started with the pioneering 

work of Harry Markowitz in 1952 which earned him 

the 1990 Nobel Prize in economics because of the 

enormous impact of this theory on investment 

management thereafter. 

 

Tobin (1958) shows that there is a logical 

connection between the assumption that asset 

returns are random variables, with variance and 

expected returns as the main criteria for selecting 

assets, and the Morgenstern-Von Newman 

expected utility theory. This implies if an investor 

behaves as the expected utility theory predicts, then 

he will choose his portfolio in accordance with the 

mean variance optimization approach (Markowitz, 

1959). 

 

Fletcher and Hillier found a little evidence of 

higher Sharpe-ratio and abnormal return generated 

from mean-variance and resampled strategies, 

(Fletcher and Hillier, 2005). 

 

Lintner (1965) added a justification for the use of 

the variance in the measurement of risk by 

presenting a more complete formalization which 

renders practically the same results as those 

obtained by Sharpe. 

 

Fama (1970) in line with the Chicago school 

develops a general framework in order to test 

Efficient Market Hypothesis which highlights the 

logical coherence between special cases that are 

being evaluated. 

 

Hachloufi et al. (2012) presented an approach 

based on the classifications of genetic algorithms 

for an optimal choice of a reduced size portfolio. 

This led to a financial gain surplus in terms of cost 

and taxes reduction, and performance at reduced 

design loads. 

 

Pandari et al. (2012) applied Genetic Algorithm 

(GA) to select the best portfolio in order to optimize 

their objectives of the rate of return, return 

skewness, liquidity and Sharpe ratio. The obtained 

results were compared with the results of Markowitz 

classic model. The comparison showed that, the rate 

of return of the portfolio of GA model was less than 

that of the Markowitz classic model. 

 

Divya and Kumar (2012) planned to obtain a closer 

representation for the uncertainty that signalise 

Financial Market, thereby outlining an approach to 

solve Financial Assets selection problems for a 

portfolio in a non-linear and uncertainty 

environment, by the application of a Fuzzy logic 

and Genetic Algorithm to optimize the investment 

profitability. 

 

Sinha et al. (2013) generated an algorithm to 

construct an optimum portfolio from a vast pool of 

stocks listed in a single market index SPX 500 

index. Their algorithm however selects stocks on the 

grounds of a priority index function created on 

company fundamentals and genetically give 

optimum weights to the stocks selected by searching 

for a genetically appropriate combination of return 

and risk on the grounds of historical data. 

 

Guha et al. (2013) proposed a fuzzy portfolio 

selection model based on fuzzy linear 

programming solved by Guhu et al. They provided 

for finding a global near optimal solution with a 

reduction in computational complexity compared to 

the existing methods. 

 

 

 

 

 



26                                      GGJJTT  Vol. 2, No. 2, March, 2018 

2. Resources and Methods Used 

 
2.1Resources 
 

The data on share prices for five selected equities 

were collected from the Ghana Stock Exchange for 

a five-year period from 2010 – 2015. These are 

monthly data from January, 2010 – December, 

2015. The market capitalization is the product of 

the closing price and shares issued. Table 1 shows 

the market information of Equities. 

 

Table 1 Market Information of Equities  

COMPANY 

CLOSING 

PRICE 

(31/12/15) 

SHARES 

ISSUED (Mil) 

- (31/12/15) 

MARKET 

CAPILIZATION 

(Mil) - (31/12/15) 

FML 7.35 116.21 854.14 

ETI 0.27 24,067.75 6,498.29 

EGL 2.4 133.1 319.44 

GCB 3.79 265 1,004.35 

GGBL 1.99 211.31 420.51 

CAL 1 548.26 548.26 

 

2.2 Methods  

 
2.2.1 Geometric Mean 

 

The geometric mean is the average of a dataset of 

products, the calculation of which is commonly 

used to determine the performance results of an 

investment or portfolio. It is technically defined as 

the n
th

 root product of ‘n’ numbers. It must be used 

when working with percentages, which are derived 

from values whiles the standard arithmetic mean 

works with the values themselves. 

 

1

1 2 3

1

n n
n

i

i

Geometric Mean x x x x


 
  
 
 K        (1) 

 

2.2.2 Calculation of Risk 

 

The variance of the portfolio simply measures the 

volatility or fluctuations of returns of the portfolio. 

It is the measure of surprises the investor is 

exposed to by holding a portfolio of assets. It is 

measured by the Variance, the Standard Deviation, 

the Semivariance and the Semideviation.  

 

Variance 

 

Variance is a measure of the variation of possible 

rates of return  iR , from the expected rate of 

return  x . This metric measures the volatility of 

the portfolio. The formula for the computation of 

an individual investment variance and semivariance 

is given as Equation (2). 

 

Variance    
22

1

n

i i

i

x x P


               (2)                                                         

where iP   is the probability of the possible rate of 

return ix . 

 

Semivariance  

 

The semivariance is the measure of the dispersion 

of all observations that falls below the mean or a 

target value of a data set. Semivariance is an 

average of the squared deviations of values that are 

less than the mean. Semivariance is similar to 

variance, however it only considers observations 

below the average or a target value (Huang, 2008). 

It is a useful tool in portfolio or asset analysis, 

semivariance provides a measure for downside risk 

while standard deviation and variance provide 

measures of volatility. Semivariance only looks at 

the negative fluctuations of an asset. By 

neutralizing all values above the mean or an 

investor’s target return, semivariance estimates the 

average losses the portfolio could incur. For risk, 

adverse investors, solving for optimal portfolio by 

minimising semivariance would limit the likelihood 

of a large loss (Sharpe, 1963). 

The semivariance formula is given by 

    Semivariance  
21

i

n

i

x x

x x
n 

                 (3) 

2.2.3 Sharpe Ratio 

 

The Sharpe ratio is a measure of stock of fund 

performance, it measures the reward per unit of 

risk. By definition it is the ratio of an asset’s excess 

return to its volatility. It is also known as the 

reward-to-variability ratio. The Sharpe ratio 

computed based on realized returns is as follows 

                            
ˆ

j j

j

j

r
S

 



                (4) 

where ˆ
j  is the return on asset j, 

fr   is the return 

on risk free asset, ˆ
j   is the semi deviation of  ˆ

j . 

The portfolio that maximizes the Sharpe ratio is 

known as The Sharpe optimal portfolio and is 

given as:  

  *

1

ˆ
arg max : 1

d
j j

i

ij

r
S where J j





  
  

  
  (5) 

2.2.4 Assets and Portfolios 

 
Anything we can purchase can be termed asset. An 

asset is an economic resource that can be owned 

and is expected to provide future economic 

benefits. 

 

Asset prices sometimes seem to deviate from what 

fundamentals would suggest and exhibit patterns 

different than predictions of standard models with 
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perfect financial markets. A bubble, an extreme 

form of such deviation, can be defined as the part 

of a grossly upward asset price movement that is 

unexplainable based on fundamentals (Garber, 

2000). 

 

Let ( )P t  denote Random price at time t, ( )R t  

denote Random gross return at time t and  r t

denote Random net return at time t. 

                       
 

(t 1)P
R t

P t


                 (6) 

where  1P t    denotes the random price at time 

1t    

 

      
 

 

(t 1) P
1

P t
r t R t

P t

 
  

        (7) 

Let W  denote the total wealth distributed over d  

assets; 0W   iw  dollar amount in asset :i

0 ~ , 0i iw long w short      

The net return on a position w  is given by 

 

 
   

 1 1 1

1
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i i i i i d
i i i i
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i
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   (8) 
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i

i
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x

W
   and 

    

1

d

x i i

i

r r x


                       (9) 

Let  1 2, , , :dx x x x K each component can be 

either positive or negative. ix   is the fraction 

invested in asset 

1

d

i

i

i x


 .The random net return 

on the portfolio is given by 

1

d

x i i

i

r r x


  

Portfolio vector  

   
2.2.5 Reduction of Uncertainties of Diversification  

 

Let d  be total assets with  

, , 0i ij ij for all i j          

Given two portfolios of asset  1,0, ,0
T

x  K   

Everything invested in asset 1 

      

 
1

1,1, ,1
T

y
d

 K :Equal all investment in all 

assets. 

Expected returns of portfolios x and y 

         

1

d
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i

E x   


 
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 
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Both portfolios have the same returns 

Semivariance of returns of both portfolios are given 

by 

 2 2

1

var
d

x i i

i

r x 


 
  

 
                         (12) 
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2.2.6 Capital Asset Pricing Model (CAPM) as 

Pricing Formula 

 

Suppose the payoff from an investment in 1yr is  

X , what is the fair price of this investment? 

Let 1X

X
r

p
   denote the net rate of return on X. 

The Beta or the market risk of X is given by 

   
2 2

cov , cov ,1X m m

X

m m

r r X r

p


 
    

Suppose CAPM holds, then  X xE r   must lie 

on the security market line implying  

          X f x m fr r r                     (14) 

   

 
 

,1
1

m

f m f

m

E X Cov X r
r r

P P Var r
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( )
1 (1 ) ( )

m
m

m

Cov X rE X
P r

rf rf Var r
  

 
   (16) 

 

2.2.7 Portfolio Optimisation 

 
There are two obvious formulations for the 

portfolio optimization. 

Maximization of geometric returns: 

 TMax w   

Subject to 

1

T

T

w w

I w






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Minimisation of risk: 

  TMin w w  

Subject to 

1

T

T

w

I w

 


  

2.2.8 Trend Analysis  

 
Trend analysis is the process of comparing data 

over time to identify any consistent results or 

trends. It is also a statistical technique that uses 

historical results to predict future outcomes. It is 

based on the idea that what has happened in the 

past gives an idea of what is likely to happen in the 

future. 

 

 

Trend Equation  

 

A simple trend line equation is given by:  

 

  ty 10                           (17)    

                          

where 0  
is the y-intercept and 1  is the slope 

with time. 

 

3 Results and Discussion  
 

3.1 Descriptive Statistics  
 

Table 2 shows the kurtosis of the selected equities. 

The standard reference for kurtosis in return 

distribution is the normal distribution, which has a 

kurtosis coefficient of 3. The higher the kurtosis 

coefficient, the higher the level of kurtosis, so a 

kurtosis coefficient of 4 would indicate a relatively 

peaked return distribution, while a kurtosis 

coefficient of 2 would indicate a relatively flat 

return distribution. Except ETI and CAL, all other 

equities recorded kurtosis of 3 and above, which 

indicate that the returns do not follow the normal 

distribution. 

 

Table 2 Kurtosis and P-Values Equities on the 

Ghana Stock Exchange 

Equity 

Kurtosis 

On 

Returns 

Geometric 

Mean 

on Returns 

P-Value 

FML 21.18 0.003 0.03 

ETI 2.63 0.008 0.03 

EGL 5.98 0.019 0.03 

GCB 5.29 0.023 0.03 

GGBL 3.84 0.006 0.02 

CAL 1.25 0.022 0.03 

3.1.1 Trend Analysis  

 

The volatility result from the price hikes over 

period hence, it is intense, and large fluctuations 

are followed by large fluctuations indicating 

variation in variance. Fig. 1 shows the returns 

volatility of the selected equities. 

 
Fig. 1 Stocked Area Chart of Equity Prices of 

Selected Equities on the Ghana Stock 

Exchange 

3.2 Returns and Risk on Equities 

 

ETI, EGL, GCB and CAL had their returns 

exceeding their risk. GGBL exposes an investor to 

similar risk and returns whiles an investor investing 

in FML is extremely exposed. However, the higher 

the exposure, the higher the gambled reward. Table 

3 and Fig. 2 shows detailed information on returns 

against risk of the equities. 

 

Table 3  Geometric Mean and Semi Variance of 

some Selected Equities on the Ghana 

Stock Exchange 

SHARE 

CODE 

GEOMETRIC 

MEAN 

SEMI 

VARIANCE 

FML 0.8254 0.0161 

ETI 0.5602 0.0044 

EGL 0.2465 0.0028 

GCB 0.1971 0.0029 

GGBL 0.6771 0.0057 

CAL 0.2046 0.0026 

GSE-ASI 2.7791 0.0258 
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Fig. 2 Bar graph of Returns and Risk 

 

3.3 Correlation Coefficient of Selected Equities 

 

The only combination with a weak negative 

correlation implying they are moving in opposite 

direction but not strong enough is FML and CAL. 

All other combinations are moving in the same 

direction hence the positive correlation. The 

highest correlation recorded was GCB and CAL, 

this combination recorded a correlation of 

0.469895. This might have resulted from the fact 

that they are both in the banking industry. Table 4 

Shows the correlation between equities. 

 

3.4 Sharpe Ratio 
 

CAL recorded the highest Sharpe ratio of 0.41034 

followed by GCB and EGL respectively. The 

Sharpe ratio simply indicate the excess returns of a 

given equity over the risk-free instrument. CAL, 

GCB and EGL outperform the risk-free instrument 

(182 Treasury Bill) more compared to the 

performance of FML, ETI and GGCB over the 

risk-free instrument. Table 5 shows some selected 

equities and their corresponding Sharpe Ratio, and 

Fig. 3 shows the bar chart of the equities and their 

corresponding Sharpe Ratio. 

 

Table 5 Selected Equities and Their 

Corresponding Sharpe Ratio 

Share Code Sharpe Ratio 

FML 0.00623 

ETI 0.09635 

EGL 0.34441 

GCB 0.40137 

GGBL 0.04806 

CAL 0.41034 

 

 
Fig. 3 Bar Graph of Sharpe Ratio of Stocks 

 

 

 
 

Table 4 Correlation Coefficient of Selected Equities 
 FML ETI EGL GCB GGBL CAL 

FML 1 0.069789 0.240202 0.217505 0.183307 -0.18235 

ETI 0.069789 1 0.080451 0.213346 0.087917 0.175465 

EGL 0.240202 0.080451 1 0.004018 0.109313 0.153677 

GCB 0.217505 0.213346 0.004018 1 0.33306 0.469895 

GGBL 0.183307 0.087917 0.109313 0.33306 1 0.376415 

CAL -0.18235 0.175465 0.153677 0.469895 0.376415 1 
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3.5 Portfolio Optimisation 

 
The portfolio optimisation for FML and ETI. The 

minimum variance portfolio for FML and ETI is 

100% ETI and 0% FML with a risk of 0.00271 and 

returns of 0.01576. the efficient frontier portfolio is 

0.1 FML plus 0.9 ETI, 0.2 FML plus 0.8 ETI. For a 

risk lover, any of the efficient frontiers would be 

welcomed. Table 6 shows the detailed feasible 

combination of FML and ETI. Fig. 4 shows the 

minimum variance portfolio and efficient frontiers 

for FML and ETI. 
 

Table 6 Geometric Mean – Semi-Deviation of 

FML and ETI  

FML ETI Mean Variance Stdev 

0% 100.00% 0.00820 0.00433 6.58% 

10% 90.00% 0.00765 0.00385 6.20% 

20% 80.00% 0.00710 0.00373 6.11% 

30% 70.00% 0.00655 0.00398 6.31% 

40% 60.00% 0.00600 0.00458 6.77% 

50% 50.00% 0.00545 0.00555 7.45% 

60% 40.00% 0.00490 0.00687 8.29% 

70% 30.00% 0.00435 0.00855 9.25% 

80% 20.00% 0.00381 0.01060 10.29% 

90% 10.00% 0.00326 0.01300 11.40% 

100% 0.00% 0.00271 0.01576 12.55% 
 

 
 

Fig. 4 Efficient Frontier for FML and ETI 

 

3.5.2 Portfolio optimization for FML and EGL 

 

The minimum variance portfolio for FML and EGL 

is 100% EGL and 0% FML with a risk of 0.00277 

and returns of 0.01992. the efficient frontier 

portfolio is 0.1 FML plus 0.9 EGL, 0.2 FML plus 

0.8 EGL. For the risk lover, any of the efficient 

frontier would be welcomed. Table 7 shows the 

detailed feasible combination of FML and EGL. 

Fig. 5 shows the minimum variance portfolio and 

efficient frontiers for FML and EGL. 

 

Table 7 Portfolio Returns and Deviation FML 

and EGL 

FML EGL Mean Variance St. dev 

0% 100.00% 0.01992 0.00277 5.26% 

10% 90.00% 0.01820 0.00304 5.51% 

20% 80.00% 0.01648 0.00354 5.95% 

30% 70.00% 0.01476 0.00426 6.53% 

40% 60.00% 0.01304 0.00522 7.22% 

50% 50.00% 0.01131 0.00640 8.00% 

60% 40.00% 0.00959 0.00782 8.84% 

70% 30.00% 0.00787 0.00946 9.73% 

80% 20.00% 0.00615 0.01133 10.64% 

90% 10.00% 0.00443 0.01343 11.59% 

100% 0.00% 0.00271 0.01576 12.55% 
 

 
Fig. 5 Efficient Frontier-FML and EGL 

 

3.5.3 Portfolio Returns - FML and GCB 

 

The minimum variance portfolio for FML and 

GCB is 100% GCB and 0% FML with a risk of 

0.00284 and returns of 0.02314. the efficient 

frontier portfolio is 0.1 FML plus 0.9 GCB, 0.2 

FML plus 0.8 GCB. For the risk lover, any of the 

efficient frontier would be welcomed. Table 8 

shows the detailed feasible combination of FML 

and GCB. Fig. 6 Shows the minimum variance 

portfolio and efficient frontiers for FML and GCB. 

 

Table 8 Portfolio Returns and Deviations - FML 

and GCB 

FML GCB Mean Variance St. dev 

0% 100.00% 0.02314 0.00284 5.33% 

10% 90.00% 0.02110 0.00304 5.51% 

20% 80.00% 0.01905 0.00348 5.90% 

30% 70.00% 0.01701 0.00417 6.46% 

40% 60.00% 0.01497 0.00510 7.14% 

50% 50.00% 0.01292 0.00627 7.92% 

60% 40.00% 0.01088 0.00768 8.76% 

70% 30.00% 0.00884 0.00934 9.66% 

80% 20.00% 0.00679 0.01123 10.60% 

90% 10.00% 0.00475 0.01338 11.57% 

100% 0.00% 0.00271 0.01576 12.55% 
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Fig. 6 Plot of Efficient Frontier - FML and GBC 
 

3.5.4 Portfolio Returns and Deviation - FML and 

GGBL 

 

The minimum variance portfolio for FML and 

GGBL is 100% GGBL and 0% FML with a risk of 

0.0028 and returns of 0.0234. the efficient frontier 

portfolio is 0.1 FML plus 0.9 GGBL, 0.2 FML plus 

0.8 GGBL. For the risk lover, any of the efficient 

frontier would be welcomed. Table 9 shows the 

detailed feasible combination of FML and GGBL. 

Fig. 7 shows the minimum variance portfolio and 

efficient frontiers for FML and GGBL. 

 

Table 9 Portfolio Returns and Deviation - FML 

and GGBL 

FML GGBL Mean Variance St. dev 

0% 100.00% 0.00551 0.00560 7.49% 

10% 90.00% 0.00523 0.00506 7.12% 

20% 80.00% 0.00495 0.00487 6.98% 

30% 70.00% 0.00467 0.00502 7.09% 

40% 60.00% 0.00439 0.00552 7.43% 

50% 50.00% 0.00411 0.00636 7.98% 

60% 40.00% 0.00383 0.00755 8.69% 

70% 30.00% 0.00355 0.00908 9.53% 

80% 20.00% 0.00327 0.01096 10.47% 

90% 10.00% 0.00299 0.01319 11.48% 

100% 0.00% 0.00271 0.01576 12.55% 

 

 

Fig. 7 Efficient Frontier – FML and GGBL 

 

3.5.5 Portfolio Returns and Deviation - FML and 

CAL 

 

The minimum variance portfolio for FML and CAL 

is 100% CAL and 0% FML with a risk of 0.00271 

and returns of 0.01576. the efficient frontier 

portfolio is 0.1 FML plus 0.9 CAL, 0.2 FML plus 

0.8 CAL. For the risk lover, any of the efficient 

frontier would be welcomed. Table 10 shows the 

detailed feasible combination of FML and CAL. 

Fig. 8 Shows the minimum variance portfolio and 

efficient frontiers for FML and CAL. 

 

Table 10 Portfolio Returns and Deviation - FML 

and CAL 

FML CAL Mean Variance St. dev 

0% 100.00% 0.204548 0.002613252 5.11% 

10% 90.00% 0.184369 0.002044851 4.52% 

20% 80.00% 0.16419 0.001902969 4.36% 

30% 70.00% 0.144011 0.002187604 4.68% 

40% 60.00% 0.123831 0.002898758 5.38% 

50% 50.00% 0.103652 0.004036429 6.35% 

60% 40.00% 0.083473 0.005600619 7.48% 

70% 30.00% 0.063294 0.007591327 8.71% 

80% 20.00% 0.043114 0.010008553 10.00% 

90% 10.00% 0.022935 0.012852297 11.34% 

100% 0.00% 0.002756 0.016122559 12.70% 

 

 
 

Fig. 8 Efficient Frontier – FML and CAL 

 

3.5.5 Portfolio Returns and Deviation GCB CAL 

EGL 

The minimum variance portfolio for GCB, CAL 

and EGL is 40% GCB ,10% CAL and 50% EGL, 

with a risk of 0.00072 and returns of 0.02148 the 

efficient frontier portfolios are 0.5 GCB plus 0.1 

CAL plus 0.4 EGL, 0.5 GCB plus 0.2 CAL plus 0.3 

EGL, 0.5GCB plus 0.3 CAL and 0.2 EGL, 0.5GCB 

plus 0.4 CAL plus 0.1EGL. For the risk lover, any 

of the efficient frontier would be welcomed. Table 

11 shows the detailed feasible combination of 

GCB, CAL and EGL. Fig. 9 shows the minimum 
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variance portfolio and efficient frontiers for GCB, 

CAL and EGL. 
 

Table 11 Portfolio Returns and Deviation 

GCB CAL EGL 
Portfolio 

Returns 

Portfolio 

Risk 

40% 10.00% 50.00% 0.02148 0.00072 

50% 10.00% 40.00% 0.02180 0.00080 

30% 20.00% 50.00% 0.02142 0.00117 

10% 40.00% 50.00% 0.02132 0.00132 

20% 30.00% 50.00% 0.02137 0.00137 

10% 50.00% 40.00% 0.02158 0.00145 

50% 20.00% 30.00% 0.02207 0.00151 

20% 50.00% 30.00% 0.02191 0.00187 

50% 30.00% 20.00% 0.02234 0.00213 

30% 50.00% 20.00% 0.02223 0.00229 

50% 40.00% 10.00% 0.02260 0.00267 

40% 50.00% 10.00% 0.02255 0.00271 
 

 
 

Fig. 9 Efficient Frontier – CAL and GCB and 

EGL 

 

4 Conclusions and Recommendations  
 

It can be concluded that a diversified portfolio of 

selected equities on the Ghana Stock Exchange has 

been formed. The optimal portfolio is given by 

 

. . 0.4 0.1 0.5Min Var Portfolio GCB CAL EGL    (18) 

(i)  with 2% returns at 0.001 risk level. 

(ii) The risk level for a given level of returns of 

minimum variance portfolio has been 

reduced to 0.001 which is 0.002 less than 

risk level of any individual equity under 

study in this research. 

(iii) the minimum variance portfolio and 

efficient frontiers for the three maximum 

Sharpe ratio equities has been determined 

as shown in Table 12. 

It is recommended that, the best equities obtained 

in this study should be used for personal and 

corporate investment portfolio decisions. 

 

 Also, citizens should be educated on the risk 

involved in choosing an equity to invest in. 

 

Table 12 Minimum Variance Portfolio and 

Efficient Frontiers for the Three 

Maximum Sharpe Ratio Equities 

Portfolio weight Return Risk 
Sharpe 

Ratio 

0.4GCB+0.1CAL 

+0.5EGL 
0.02148 0.00072 0.7275 

0.5GCB+0.1CAL

+0.4EGL 
0.02180 0.00080 0.6997 

0.5GCB+0.2CAL

+0.3EGL 
0.02207 0.00151 0.5181 

0.5GCB+0.3CAL

+0.2EGL 

0.02234 0.00213 0.4418 

0.5GCB+0.4CAL

+0.1EGL 

0.02260 0.00267 0.3997 
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